Coastal Sediment Transport and morphology

Prof. D. Roelvink

Contents

- Overview of problems
- Sediment transport by waves and current
- Longshore sediment transport
- Coastline changes
- Cross-shore sediment transport
- Dune erosion

1) Siltation navigation channel

Section A - A'

2) Accretion / erosion near harbour

With harbour

Per year: S m³ Accretion after n years: n S m³ Erosion after n years: n S m³

- Dam blocks sediment supply to the delta
- Delta lobes are eroded by wave action
- Longshore transport away from the delta mouth, depending on wave climate
- Diffusional process

5) Erosion near a breakwater

Erosion time scales

- DUNE EROSION
 - Due to storm surges
 - Fast process, up to $100 \text{ m}^3/\text{m}$ in a few hours
- STRUCTURAL EROSION
 - Due to processes on engineering timescales
 - Up to 50 m³/m per year
- LONG TERM EROSION
 - Processes on geological timescales (e.g. sea level rise (IPCC: up to 2m SLR by 2100), land subsidence)

General aspects transport

Velocity \rightarrow bottom shear stress $\tau \rightarrow$ tractive force on particle F \rightarrow motion of particle

$$F = A\tau_c D^2$$

$$G = B(\rho_s - \rho)gD^3 F / G$$

$$\widehat{IIII}$$

- D = particle diameter [m]
- ρ_s = density sediment [kg/m^3]
- ρ = density water [kg/m^3]
- g = gravity accelaration [m/s²]

General aspects transport

Shields parameter

$$F / G = C \frac{\tau_c}{\Delta \rho g D}$$
, where $\Delta = \frac{\rho_s - \rho}{\rho}$

Movement if :

$F/G > tan \phi$

for spheres:
$$\frac{\tau_c}{\Delta \rho g D}$$
 > 2/3 tan ϕ

 ϕ = internal angle of friction

Critical shear stress (Soulsby, 1997)

Figure 20. Threshold of motion of sediments beneath waves and/or currents

$$D_* = \left[\frac{g\Delta}{v^2}\right]^{1/3} D_{50}$$

General aspects of sediment transport

Suspended sediment transport

$$v(z) = \frac{v_*}{\kappa} \ln \frac{z}{z_0}$$

 v_* = shear velocity (=sqrt(τ/ρ)) κ = von Karman's constant (=0.4) z_0 = bed roughness length scale

logarithmic velocity profile

Velocity profile, current only

Linear scale

Logarithmic scale

Velocity profile, waves vs current

Data: Klopman (1993) Model: 2DV wave-current interaction, Duoc Nguyen et al, 2020

- Wave-only current is weak
- Waves have big influence on current profile for case of current plus waves

Concentration profile

- Steady state, uniform
- Turbulence: exchange of fluid and sediment

• \mathcal{E}_z : eddy viscosity diffusion coefficient mixing coefficient

Z

X

$$w \cdot c_{z} \downarrow + \varepsilon_{z} \frac{\partial c_{z}}{\partial z} \uparrow = 0$$
$$c_{z} = c_{a} \exp\left[-w \int_{a}^{z} \frac{\partial z}{\varepsilon_{z}}\right]$$

- c_z related to c_a (integration const.)
- c_z also related to 'choice' of ϵ_z

Possible 'choices':

Rouse / Einstein:

- c(a): close to the bed
 - *a* : top of bottom transport layer
 - bottom transport formula and calculate c (a)

$$c(a) = \frac{S_b}{a \ \overline{v} \text{ in layer}}$$

a in coastal engineering: *r* (bottom roughness)

General expression bed load transport

$$S_{b} \sim \sqrt{\Delta g D_{50}^{3}} \theta^{b/2} \left(m\theta - n\theta_{cr} \right)^{c/2} \left(1 - \alpha \frac{\partial z_{b}}{\partial s} \right)$$

- Meijer-Peter and Muller (*b=0, c=3, m=1,n=1*)
- Van Rijn (1984) *(b=0,c=3-4,m=1,n=1)*

Coastal Sediment Transport Longshore Transport and Coastline Modelling

Prof. Dano Roelvink

$$S_{L} = \frac{1}{t_{0}} \int_{0}^{t_{0}} \int_{0}^{h} v(z,t)c(z,t)dzdt$$
$$S_{L} = \int_{0}^{h} \left(\overline{vc} + vc\right)dz$$
$$S_{L} \approx \int_{0}^{h} \overline{v(z)} \overline{c(z)}dz$$

Longshore: time-averaged concentration over depth * time-averaged velocity over depth

Longshore sediment transport

- Needed:
 - v(z) distribution;
 - $-\overline{c(z)}$ distribution:

reference concentration + distribution over depth;

Concentration profiles due to waves and current

Longshore transport

- Example: Bijker-formula (1967, 1971)
 van Rijn (1984, 1993, ...,2007)
 - bottom transport \rightarrow reference concentration;
 - $\overline{c(z)}$ and $\overline{v(z)}$ distributions are taken into account;
 - $\overline{c(z)}$ and $\overline{v(z)}$ same 'mechanisms' (parabolic ε_f and ε_s distribution)
 - near-bed concentration dominated by wave boundary layer

Soulsby – van Rijn formula

- very simple expression
- easy to implement
- reasonably close to Van Rijn's full formulations
- gives clear insight in mechanisms
- bed load + suspended load
- current plus waves
- critical velocity
- bed slope effect

The root-mean-square orbital velocity is computed as

$$U_{rms} = \frac{1}{\sqrt{2}} \frac{\pi H_{rms}}{T_p \sinh(kH)} \qquad \text{water depth}$$

Furthermore, D* is defined as (Soulsby, p.104):

$$S_{bx} = A_{cal}A_{sb}u\xi$$
$$S_{by} = A_{cal}A_{sb}v\xi$$
$$S_{sx} = A_{cal}A_{ss}u\xi$$
$$S_{sy} = A_{cal}A_{ss}v\xi$$

u, v depth-averaged velocity

where

- A_{cal} a user-defined calibration factor
- Asb bed-load multiplication factor

$$A_{sb} = 0.05 H \left(\frac{D_{50} / H}{\Delta g D_{50}}\right)^{1.2}$$

Ass suspended load multiplication factor

$$A_{ss} = 0.012 D_{50} \frac{D_*^{-0.6}}{\left(\Delta g D_{50}\right)^{1.2}}$$

a general multiplication factor

$$\xi = \left(\sqrt{U^2 + \frac{0.018}{C_D}U_{rms}^2} - U_{cr}\right)^{2.4}$$

$$C_{D} = \left[\frac{\kappa}{\ln(H/z_{0}) - 1}\right]^{2}$$

where z_0 equals 6 mm and the Von Karman constant κ is set to 0.4.

ξ

Exercise about lectures 1 and 2

- V=0.7 m/s
- H=1 m
- h=2 m
- T=7 s
- D50=0.2 mm; D90=0.3 mm
- r=0.05 m

• Compute
$$au_c, u_0, f_w, au_w, au_{cw}, S_b, S_s$$

Longshore sediment transport (bulk)

- CERC formula (SPM 1984)
 - Sandy environments only;
 - Transport determined by longshore wave energy flux P_L;
 - Parameters determined at the breaker line!
 - Original formulation: H_{rms} , not H_s

Energy flux between wave orthogonals P = E n c b Longshore flux at the breakerline $P_1 = E_b n_b c_b \cos \phi_b \sin \phi_b$

S = A P_I, where A is not dimensionless! If we substitute energy flux for wave height (E = $1/8 \rho g H^2$), we get:

S = B $H_b^2 n_b c_b \sin \phi_b \cos \phi_b$, where B (≈ 0.04) is dimensionless.

S = volumetric sediment transport [m³/s]
nc = wave group celerity [m/s]
φ= wave angle [-]
H = wave height [m]

CERC formula

Figure III-2-4. Field data relating I, and P,

Example

$$H_{0S} = 1m; T = 7s; \phi_0 = 20^{\circ}$$

 $\gamma = \frac{H_b}{h_b} = 0.7$

Determine breaker height:

- first estimate $H_{b} = H_{0}$
- calculate breaker depth based on $h_b = H_b / \gamma$,
- calculate H_b using Snell's law, Ks and Kr
- repeat last two steps until h_{b} does not change anymore

Here: $\varphi_0 = 20^\circ$, $\varphi_b = 7.2^\circ$; S = 0.03 m³ / s = 810,000 m³ / yr

Worked out in excel

rho	1025.00	1025.00	1025.00	1025.00
g	9.81	9.81	9.81	9.81
gamma	0.70	0.70	0.70	0.70
но	1.00	1.00	1.00	1.00
т	7.00	7.00	7.00	7.00
theta0	20.00	20.00	20.00	20.00
В	0.04	0.04	0.04	0.04
EO	1256.91	1256.91	1256.91	1256.91
со	10.93	10.93	10.93	10.93
Cg0	5.46	5.46	5.46	5.46
sin(theta0)	0.34	0.34	0.34	0.34
cos(theta0)	0.94	0.94	0.94	0.94
hb	1.43	1.68	1.61	1.63
С	3.74	4.06	3 <i>9</i> 8	4.00
Cg	3.74	4.06	3.98	4.00
sin(theta)	0.12	0.13	0.12	0.13
theta	6.73	7.30	7.15	7.19
cos(theta)	0.99	0.99	0.99	0.99
Ks	1.21	1.16	1.17	1.17
Kr	0.97	0.97	0.97	0.97
Hb	1.18	1.13	1.14	1.14
hb	1.68	1.61	1.63	1.63
S m3/s	0.02	0.03	0.03	0.03
S Mm3/yr	0.76	0.82	0.81	0.81

Assignment

- Hs0=3m, T=8s, $\gamma = 0.7$
- Angle of incidence:
- 75,60,50,45,40,30,20,10 deg.
- Compute conditions at breaker line
- Compute longshore sediment transport using coefficient B=0.04

$$S = B H_b^2 n_b c_b \cos \varphi_b \sin \varphi_b$$

Variations of CERC formula

H_{sig} $S=0.040 H_b^2 c_b n_b \sin\varphi_b \cos\varphi_b$ $n_{b} = 1$ $S=0.040 H_b^2 c_b \sin\varphi_b \cos\varphi_b$ $H^2 n c b = \text{const}$ $S=0.040 H_o^2 c_o n_o \sin\varphi_b \cos\varphi_o$ $n_0 = \frac{1}{2}$ $S=0.020 H_o^2 c_o \sin\varphi_b \cos\varphi_o$ Snel's law: $\frac{c_o}{c_b} = \frac{\sin \varphi_o}{\sin \varphi_b}$ $S=0.020 H_o^2 c_b \sin\varphi_o \cos\varphi_o$ $\sin \varphi_0 \cos \varphi_0 = \frac{1}{2} \sin (2\varphi_0)$ $S=0.010 \ H_o^2 \ c_b \sin{(2 \Psi_o)}$ $c_{h} = \sqrt{gh_{h}} \approx \sqrt{g/\gamma} \sqrt{H_{h}}$ $S = 0.01 \sqrt{g/\gamma} H_0^{2.5} \sin\left(2\varphi_0\right)$

Longshore sediment transport

If incident waves deviate little from shore normal => $S \approx 0$

Volume change in time:

$$\Delta V = \Delta A \Delta x = d \Delta y \Delta x = -\Delta S_x \Delta t$$

• Change in volume over time ΔV :

$$\Delta V = \Delta A \Delta x = d\Delta y \Delta x = -\Delta S_x \Delta t \Rightarrow \quad \frac{\Delta y}{\Delta t} = -\frac{1}{d} \frac{\Delta S_x}{\Delta x}$$
$$\lim_{\Delta x \to \infty} \Rightarrow \frac{\partial y}{\partial t} = -\frac{1}{d} \frac{\partial S_x}{\partial x} \tag{1}$$

• We now need an expression for the transport gradient in function of the coastline tangent $\Delta y/\Delta x$

• For small angles of wave incidence relative to the coastline orientation:

$$S_x \approx -s_x \varphi_c + S_{x,0} = -s_x \arctan \frac{\partial y}{\partial x} + S_{x,0} \approx -s_x \frac{\partial y}{\partial x} + S_{x,0}$$

where s_x is the so-called *coastal constant*, and $S_{x,0}$ is the transport under a coastline angle of 0 degrees.

Differentation wrt x yields for the transport gradient:

$$\frac{\partial S_x}{\partial x} = -s_x \frac{\partial^2 y}{\partial x^2} \tag{2}$$

• Combining (1) and (2) yields the *Pelnard-Considère diffusion equation*:

$$\frac{\partial y}{\partial t} = \frac{s_x}{d} \frac{\partial^2 y}{\partial x^2}$$

 Case of a groyne on a straight coast

$$y_* = \left[\exp\left(-x_*^2\right) - x_*\sqrt{\pi}\left(1 - erf(x_*)\right)\right] sign(x)$$

$$x_* = \frac{|x|}{\sqrt{4at}}, \quad y_* = \frac{y}{\sqrt{4at}} \frac{\sqrt{\pi}}{\varphi'}, \quad a = \frac{s_x}{d} = \frac{S_\infty}{\varphi'd}$$

 ϕ' is the angle of wave incidence, S_∞ the undisturbed transport away from the structure [m^3/yr]

Example application

- At the groyne:
 - Accretion goes with square root of time and is proportional with wave angle
 - Time to fill up till tip of groyne with length L

$$x = 0 \Longrightarrow x_* = 0 \implies y_* = 1$$
$$y = \sqrt{4at} \varphi' / \sqrt{\pi}$$

$$y = L \Longrightarrow t = \frac{\pi}{4a\varphi^2}L^2$$

Numerical approach

- Compute S-phi curve, if necessary different S-phi curves per region or cell
- Start at given y(x)
- Compute phi(x)=arc tan (dy/dx) in each point
- Compute S(x)=f(phi(x))
- compute dS(x)/dx in each point
- compute dy/dt=-1/d*dS(x)/dx
- Compute new y = old y + dy/dt * delta t
- Staggered grid is convenient

Staggered grid

$$\begin{aligned} & \text{Numerical scheme} \\ \varphi_{c,i} &= -\tan^{-1} \frac{y_{i+1} - y_i}{\Delta x} & i = 1:n-1 \\ S_i &= B H_s^{2.5} \sqrt{g / \gamma} \sin\left(2\left(\varphi_{c,i} - \varphi_w\right)\right) & i = 1:n-1 \\ dSdx_i &= \frac{S_i - S_{i-1}}{\Delta x} & i = 2:n-1 \\ dydt_i &= -\frac{1}{d} dSdx_i & i = 2:n-1 \\ y_i^{t+\Delta t} &= y_i^t + dydt_i \Delta t & i = 2:n-1 \\ \Delta t &< \frac{d\Delta x^2}{4S_{\text{max}}} \end{aligned}$$

Assignment 3

- Assume that S=B Hs2.5 sqrt(g/gamma)sin(2 (phic-phiw)
- Hs=1m
- Incident wave angle w.r.t. coast is -30 deg.
- B=0.01
- There is a groin at x=20,000 m, infinitely long
- Compute numerically the coastline over 0-40,000 m, at t= 1,2,5,10,20 years
- Compare solution after these times with Pelnard-Considere analytical solution
- Experiment with more groins and with a nourishment at t=0
- Build in the possibility to read an arbitrary initial coastline.
- Write a brief report on the findings and include the MATLAB code

