
Coastal Sediment Transport
and morphology

Prof. D. Roelvink



Contents

• Overview of problems
• Sediment transport by waves and current
• Longshore sediment transport
• Coastline changes
• Cross-shore sediment transport
• Dune erosion



Section A – A’

1) Siltation navigation channel
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waves

h2 > h1 → v2 < v1
S2 < S1 (siltation)
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2) Accretion / erosion near harbour
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Distance alongshore

Curved  coastline



Present-day 
coastline

Ancient coastline

dam

Wave action

• Dam blocks sediment supply to the delta
• Delta lobes are eroded by wave action

• Longshore transport away from the delta mouth, depending on wave climate
• Diffusional process
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Section A – A’

5) Erosion near a breakwater



7) Dune erosion / erosion pit
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Erosion time scales

• DUNE EROSION
– Due to storm surges
– Fast process, up to 100 m3/m in a few hours

• STRUCTURAL EROSION
– Due to processes on engineering timescales
– Up to 50 m3/m per year

• LONG TERM EROSION
– Processes on geological timescales (e.g. sea level rise 

(IPCC: up to 2m SLR by 2100), land subsidence)
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General aspects transport

Velocity → bottom shear stress τ → tractive force on particle F → 
motion of particle
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D = particle diameter [m]
ρs= density sediment [kg/m^3]
ρ = density water [kg/m^3]
g = gravity accelaration [m/s^2]



General aspects transport
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General aspects of sediment transport

rolling
saltation

Bottom transport

Suspended transport

Stotal = Ssuspended + Sbottom

Ssuspended

Sbedload h

Transport through the plane?



concentration c(z)

velocity  v(z)
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v* = shear velocity (=sqrt(τ/ρ))
κ= von Karman’s constant (=0.4)
z0 = bed roughness length scale 

logarithmic velocity profile

Suspended sediment transport



 
   

 
   

           

  

 
   

 
   

           

  

z0=0.04 mm
ks=1.2 mm

Velocity profile, current only

Logarithmic scaleLinear scale



Velocity profile, waves vs current

• Wave-only current is weak
• Waves have big influence on current profile for case of current plus waves

Waves Waves
Current Current

Waves
Current

Data: Klopman (1993)     
Model: 2DV wave-current interaction, Duoc Nguyen et al, 2020



Concentration profile

• Steady state, uniform
• Turbulence: exchange of fluid 

and sediment

• cz: concentration as function 
of z

• : eddy viscosity
diffusion coefficient
mixing coefficient 

zε









General expression bed load transport

• Meijer-Peter and Muller (b=0, c=3, m=1,n=1)
• Van Rijn (1984) (b=0,c=3-4,m=1,n=1)
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Coastal Sediment Transport
Longshore Transport and Coastline 
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Prof. Dano Roelvink 



waves

current

land

surf zone

deep
water

SL

SL

Sc

Sc

( )

0

0 0 0

0

0

1 ( , ) ( , )

( ) ( )

t h

L

h

L

h

L

S v z t c z t dzdt
t

S vc vc dz

S v z c z dz

=

= +

≈

∫ ∫

∫

∫

 

Longshore: time-averaged concentration over depth
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Longshore sediment transport

• Needed:
– v(z) distribution;
– c(z) distribution: 

reference concentration + distribution over depth;

waves

currents

SL

Effect of angle wave and currents



Concentration profiles due to waves and current



Longshore transport

• Example: Bijker-formula (1967, 1971)
van Rijn (1984, 1993, …,2007)

ε ε

→- bottom transport  reference concentration;
- ( ) and ( ) distributions are taken into account;
- ( ) and ( ) same 'mechanisms' (parabolic  and  distribution)
- near-bed concentration dominated 

f s

c z v z

c z v z
by wave boundary layer



Soulsby – van Rijn formula

• very simple expression
• easy to implement
• reasonably close to Van Rijn’s full formulations
• gives clear insight in mechanisms
• bed load + suspended load
• current plus waves
• critical velocity
• bed slope effect
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u, v depth-averaged velocity





Exercise about lectures 1 and 2

• V=0.7 m/s
• H=1 m
• h=2 m
• T=7 s
• D50=0.2 mm; D90=0.3 mm
• r=0.05 m
• Compute 0, , , , , ,c w w cw b su f S Sτ τ τ



Longshore sediment transport (bulk)

• CERC formula (SPM 1984)
– Sandy environments only;
– Transport determined by longshore wave energy 

flux PL;
– Parameters determined at the breaker line!
– Original formulation: Hrms, not Hs



Energy flux between wave orthogonals P = E n c b
Longshore flux at the breakerline Pl = Eb nb cb cos φb sin φb

S = A Pl,, where A is not dimensionless! 
If we substitute energy flux for wave height (E = 1/8 ρgH2), we get:

S = B Hb
2 nb cb sin φb cos φb, where B (≈0.04) is dimensionless.

S 1m

sin φb1m

φb

surf zone

breaker line

S = volumetric sediment transport [m3/s]
nc = wave group celerity [m/s]
φ= wave angle [-]
H = wave height [m]



CERC formula



Example

H0S = 1m; T = 7s; φ0=20°

γ

γ
b 0

b

 =  = 0.7

Determine breaker height:
- first estimate H =H
- calculate breaker depth based on h =H / , 
- calculate H  using Snell's law, Ks and Kr
- repeat last two steps until h  does not change anym

b

b

b b
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H
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ϕ ϕ= = 3 3
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Here: 20 ,  7.2 ;   S = 0.03 m / s = 810,000 m / yro o
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Worked out in excel
rho 1025.00 1025.00 1025.00 1025.00
g 9.81 9.81 9.81 9.81
gamma 0.70 0.70 0.70 0.70
H0 1.00 1.00 1.00 1.00
T 7.00 7.00 7.00 7.00
theta0 20.00 20.00 20.00 20.00
B 0.04 0.04 0.04 0.04
E0 1256.91 1256.91 1256.91 1256.91
C0 10.93 10.93 10.93 10.93
Cg0 5.46 5.46 5.46 5.46
sin(theta0) 0.34 0.34 0.34 0.34
cos(theta0) 0.94 0.94 0.94 0.94
hb 1.43 1.68 1.61 1.63
C 3.74 4.06 3.98 4.00
Cg 3.74 4.06 3.98 4.00
sin(theta) 0.12 0.13 0.12 0.13
theta 6.73 7.30 7.15 7.19
cos(theta) 0.99 0.99 0.99 0.99
Ks 1.21 1.16 1.17 1.17
Kr 0.97 0.97 0.97 0.97
Hb 1.18 1.13 1.14 1.14
hb 1.68 1.61 1.63 1.63

S m3/s 0.02 0.03 0.03 0.03
S Mm3/yr 0.76 0.82 0.81 0.81



Assignment

• Hs0=3m, T=8s,
• Angle of incidence: 
• 75,60,50,45,40,30,20,10 deg.
• Compute conditions at breaker line
• Compute longshore sediment transport using 

coefficient B=0.04

0.7γ =



Variations of CERC formula
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Longshore sediment transport

If incident waves deviate little from shore normal => S≈0

Maximum at just less than
45 deg incidence



Coastline modeling

Cross-shore view

Longshore view

Volume change in time:

∆𝑉𝑉 = ∆𝐴𝐴∆𝑥𝑥
= 𝑑𝑑∆𝑦𝑦∆𝑥𝑥 = −∆𝑆𝑆𝑥𝑥∆𝑡𝑡



Coastline modeling

• Change in volume over time ∆V:

• We now need an expression for the transport 
gradient in function of the coastline tangent 
∆y/∆x 

(1)



Coastline modeling
• For small angles of wave incidence relative to the coastline orientation:

where sx is the so-called coastal constant, and Sx,0 is the transport under a 
coastline angle of 0 degrees.

Differentation wrt x yields for the transport 
gradient:

(2)



Coastline modeling
• Combining (1) and (2) yields the Pelnard-Considère diffusion equation:



Coastline modeling

• Case of a groyne on a 
straight coast

ϕ’ is the angle of wave incidence, S∞ the undisturbed
transport away from the structure [m^3/yr]
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Example application

• At the groyne:
– Accretion goes with square 

root of time and is 
proportional with wave 
angle

– Time to fill up till tip of 
groyne with length L

* *0 0 1
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Numerical approach

• Compute S-phi curve, if necessary different S-phi 
curves per region or cell

• Start at given y(x)
• Compute phi(x)=arc tan (dy/dx) in each point
• Compute S(x)=f(phi(x))
• compute dS(x)/dx in each point
• compute dy/dt=-1/d*dS(x)/dx
• Compute new y = old y + dy/dt * delta t
• Staggered grid is convenient



Staggered grid
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Numerical scheme
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Assignment 3

• Assume that S=B Hs2.5 sqrt(g/gamma)sin(2 (phic-phiw)
• Hs=1m
• Incident wave angle w.r.t. coast is -30 deg.
• B=0.01
• There is a groin at x=20,000 m, infinitely long
• Compute numerically the coastline over 0-40,000 m, at t= 1,2,5,10,20 years
• Compare solution after these times with Pelnard-Considere analytical solution
• Experiment with more groins and with a nourishment at t=0
• Build in the possibility to read an arbitrary initial coastline.
• Write a brief report on the findings and include the MATLAB code
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