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Currents and waves in coastal areas

• Shallow water equations
– 3D
– Depth-averaged

• Wave and roller energy balance
• Wave-driven currents
• Wind-driven currents
• Tidal currents
• Currents passing a channel



Objectives

• Understand background of basic equations
• Learn which terms are dominant in different 

situations
• Find simple solutions for schematised cases
• Form independent opinion on validity of 

complex model results
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Velocities
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Shear stresses
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Pressure

yzτ

x

y
z

x∆

z∆
y∆p

p

p



Momentum balance

• F=m.a
• F= sum of stresses times area plus sum of 

pressure times area
•

•
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=



Momentum balance (x)
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Momentum balance
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Mass balance: incompressible flow
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Averaging momentum balance 
over short timescales

• Turbulence
– Reynolds stresses
– Approximated by turbulent shear stresses
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Averaging momentum balance 
over short timescales

• Waves
– Radiation stresses
– Approximated by linear theory
– Details in Short Waves lectures



Shallow water approximation

• Horizontal scales >> vertical scales
• Vertical velocities << horizontal velocities
• Neglect vertical acceleration
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Hydrostatic pressure

• Inhomogeneous (density not constant):

• Homogeneous (density constant):
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Shallow Water Equations (3D)
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Boundary conditions 
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From moving to fixed 
frame of reference
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Shallow Water Equations (3D)
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Basis for Delft3D, POM, ROMS, Mike 3
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Depth-averaged momentum balance
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Shallow water equations (2DH)
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Wave forcing



Waves and wave forcing

• Focus on nearshore
• Propagation and 

dissipation
• Waves driving current



Wave properties
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Waves and wave forcing

• Wave energy balance
• Dispersion relation
• Wave celerity and group velocity
• Snel’s Law
• Shoaling and refraction
• Wave breaking
• Dissipation
• Solving 1D energy balance
• Radiation stresses and wave forces



Wave energy balance
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Dispersion relation

• Relation between wave period T and wave 
length L for given water depth
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Deep water
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Shallow water
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Snel’s Law

• Valid for straight contour lines
• Relates local wave angle to deep water wave 

angle
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Wave breaking

• Complex process
• Various approximations, e.g.  

– Battjes and Janssen, 1978
– Thornton and Guza, 1983
– Roelvink, 1993
– Baldock, 1998



Baldock model
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1D Wave energy balance
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Solving 1D wave energy balance

• Outside surf zone:
– Wave energy flux is constant
– Group velocity follows from dispersion relation
– Wave angle follows from Snel’s Law
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Shoaling and refraction

• Shoaling is change in wave height due to 
change in group velocity

• Mostly increasing towards shore
• Refraction is bending of wave rays towards 

shore, leads to decrease of wave height 
because energy is spread over wider area
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Example

• Deep water conditions:
– Wave height 1 m
– Wave period 10 s
– Wave direction 30 deg. w.r.t. normal

• Shallow water:
– Water depth 2 m
– Wave direction?
– Wave height?



Solving 1D wave energy balance

• Inside surf zone:
– Group velocity follows from dispersion relation
– Wave angle follows from Snel’s Law
– Dissipation follows from e.g. Baldock, relating wave 

dissipation to wave energy and water depth
– Solve E numerically, starting from known value outside 

breaker zone
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Wave forces
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Radiation stresses
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Wave forces

• Follow from radiation stress gradients
• Radiation stresses are function of wave 

energy, wave direction and ratio wave celerity 
to group velocity

• In 1D case we can compute all these easily



1D case 
(cross-shore profile model)

• Assume straight and parallel contour lines
• All terms            vanish
• Cross-shore wave forces and longshore wave 

forces can be easily computed from the 
solution of the 1D wave energy balance

• There is a weak feedback through depth to the 
wave energy balance
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Cross-shore wave forces
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Cross-shore momentum balance

• Perpendicularly incident waves (flume): 
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Example for flume test
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Longshore wave forces

( )cos sin

yyxy
y

S
F

x

n
x

S
y

Eϑ ϑ

∂ 
= − ∂ 

∂

∂
  ∂

+ =
∂

= −



Longshore wave forces
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Longshore wave forces
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Wave-driven current
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Waves and wave driven currents

• Roller model
• Combined shear 

stress due to waves 
and current

• Wave-driven current



Roller model

• Delay between start of wave breaking and 
start of upward slope in setup

• Similar delay between start of wave breaking 
and wave-driven current

• This can be explained and modelled by a 
‘roller model’



Roller model

• Energy in roller denoted by Er
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Roller balance
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Example of longshore and cross-shore 
forcing, flow and setup



Effect of roller on setup

Nairn, Roelvink and Southgate , ICCE 1990



Effect of roller on undertow



• Important for
– Generation of longshore currents
– Sediment transport (stirring)

• Subjects:
– Bottom shear stress uniform flow
– Shear stress waves only
– Shear stress due to waves and currents

Bed shear stress due to waves and 
currents



Bed shear stress

• Current only

• Waves only
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Near-bed velocity

• For regular waves:

• For random waves:
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Wave-current interaction 

• Given current shear stress and wave shear stress, what is 
combined wave-current shear stress?



Mean shear stress

• Shear stresses cannot be just added up;
• Neither can near-bed velocities



Bed shear stress due to currents and waves

• Various approaches since ’60s (Bijker)
• Soulsby (e.g. ‘Dynamics of Marine Sands’) provides 

parameterized version of simple and more advanced 
models

• Maximum shear stress in wave period (important for 
stirring up sediment)

• Mean shear stress in wave period (important for flow 
resistance),         also often called 

maxτ

mτ cwτ





Soulsby parameterisation



Simple expressions

• Soulsby DATA2:
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% function to compute tauc for given taum
function [tauc]=soulsby(taum,tauw)
tauc=0;taucold=1000;iter=0
while abs(taucold-tauc)>1e-6

taucold=tauc
tauc=taum/(1+1.2*(tauw/(tauc+tauw))^3.2)
iter=iter+1

end



Bed shear stress according to 
Feddersen et al (2000)
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Assignment (2)
• Local Wave conditions:

– Hrms = 1 m
– Tp = 6 s
– Direction 20 deg to shore normal
– Depth 2 m
– Roughness r=0.06

• Compute 
– wave dissipation rate, 
– longshore wave force Fy, 
– mean longshore shear stress, 
– wave-induced shear stress tauw, 
– current-induced shear stress tauc, 
– current velocity v



Longshore current computation

• Snel’s Law
• Wave energy balance and roller energy 

balance
• Bed shear stress due to currents and waves
• Good example of field validation: Ruessink et 

al., 2001.
• Egmond (NL) and Duck (USA)







Questions to think about

• Study Ruessink et al (2001) paper
• Do you recognize the formulations?
• What are the main differences with the 

formulations discussed in Roelvink&Reniers?
• Which model parameters are most important 

for model skill?
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