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Challenge —Hydrological Modelling at Local Scale

Risk — Hazard X Exposure X Vulnerability
Intensified extreme events Population Growth Prepareness
IPCC Sixth Assessment Report and Urbanization Include:
has noted increase of different More than 4 billion Accurate forecasts of
extreme events, with high people — more than half the hazards
confidence level. of the world = live in

urban areas.
Heatwave, heave precipitation, Two third by 2050
river flood, drought, compound
extremes. Concentrated
population,
infrastructure, water
demand
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Challenge —Hydrological Modelling at Local Scale
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Challenge —Hydrological Modelling at Local Scale
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Uncertainties and errors
in model setup and parameter identification

hydro-climatic gradient

Anthropogenic influence
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Solution — Hybrid Framework at Gauged Basins

Process-Based Model — Post Processing — Evaluation —_— Performance Attribution
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Observed and modelled data Post-processing to local data
®  Inputs: Simulated streamflow e  Generalized Linear Model (GLM) e  Compare performance
° Outputs: Observed streamflow
i O_R ° Quantile Mapping (QM) ° Identify patterns and drivers
* Residuals Individually Trained

° Random Forest (RF)

80% Training
e  Long Short-Term Memory (LSTM) 20% Testing
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Performance — Hybrid Framework at Gauged Basins

High extremes:
NSE
Nash-Sutcliffe coefficient

Low extremes:
logNSE
Logarithmic NSE

Total volume:
SMAE
Scaled Mean Absolute Error
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Hybrid modelling improves representation of streamflow characteristics at
local scale
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Understanding — Hybrid Framework at Gauged Basins
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Solution — Hybrid Framework at Ungauged Basins

Regionalization - Hydrological similarity
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Solution — Hybrid Framework at Ungauged Basins
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Solution — Hybrid Framework at Ungauged Basins

Static variables: Dynamic variables:
Climatology Precipitation
Topography Temperature
Hydrological regimes Simulated runoff
Precipitation Prec
Temperature Temp ‘ “ ' ‘ ‘
Snow depth Snow ‘ ‘ “ '
Actual evapotranspiration AET ‘ ‘ '
Potential evapotranspiration PET
Dryness index PET/Prec
Evaporative index AET/Prec
Upstream Area Area ‘ “ . ‘ ‘
Elevation Elev ‘ ' “ ‘
Relief ratio Relief ® ® [ )
Slope Slope
Hydrological regime Cluster Cross Validation
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Performance — Hybrid Framework at Ungauged Basins

High extreme, Q90
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Al-enhancement have added values for both gauged and
ungauged basins, also varies across hydrological regimes
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Application — Hybrid Framework at Pan European Domain

High extreme, Q90

Raw model Regionalized Al-enhanced
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Application — Hybrid Framework in Operational Forecast
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Take home messages

‘Large-scale hydrological models are important tools to support equitable access to climate services.
*However, they often face challenges at the local scale, where critical decisions are made.
*A hybrid framework that integrates post-processing techniques can improve their performance.

*A regionalized approach can even enhance predictions in ungauged basins by using information from
gauged ones.

*These methods show strong potential to be operationalized in climate and hydrological forecast
products.
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Integrating Scientific and Local Data
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