

Introduction to Remote Sensing for IWRM

Better understanding of (monitoring) processes

Oct 5, 2025

What is Remote Sensing?

- A way of collecting and analyzing data to get information about an object without being in direct physical contact
- The observed object = the Earth.
- How? By using sensors mounted to a satellite (or an aircraft, or drone) that measure electromagnetic radiation (energy)
- The way objects interact with this energy differs

Electromagnetic spectrum

- Radiation travels as waves, each with a specific wavelength and frequency
- The human eye can only see a small portion of the EM spectrum, while satellites can detect many other wavelengths invisible to us
- Different frequencies are useful for different applications
- Remote sensing uses these 'invisible' wavelengths to study the Earth's surface and atmosphere

Passive vs. active sensors

- Passive: rely on reflected or emitted light from external source (sun or earth)
- Active: use their own source of radiation and measures the amount reflected back
 - Day and night
 - Can see through clouds (radar → longer wavelengths)
- Today mostly about passive

Reflectance

- Reflectance is the ratio of light reflected off a surface relative to the amount of light striking that surface
- Depends on type of surface and wavelength
- For example, water reflects very little light at all wavelengths, vegetation reflects little in blue but a lot in NIR

Many EO satellites

BUILDING ON THE LANDSAT LEGACY

Resolution

- Spatial
 - Size of a single pixel of image
- Spectral
 - Wavelength range for particular band
- Radiometric
 - Ability to detect small differences in energy
- Temporal
 - Revisit period, i.e. time before a satellite passes over de same spot

Example Sentinel-2

• **Revisit time:** 5 days

Bands: 13 spectral bands

• Spatial resolution: 10, 20, or 60 m

 Radiometric resolution: 4096 levels of brightness

Multispectral imagery

- Each band measures a different range of wavelength
- If satellites measure multiple bands (a few) → multispectral imagery
- E.g. Red/Green/Blue
- Near infrared (NIR)→ vegetation mapping

Band ratios and combinations

- Selection of specific bands to enhance specific features of interest
- There are many other indices that provide insight into different properties/surfaces:

Theme	Landsat-8	Sentinel-2
Traditional false color	6,5,4	11,8,4
False Color Urban	7,6,4	12,11,4
Agriculture	10,6,3	-
Normalized difference vegetation index (NDVI)	(5-4)/(5+4)	(8-4)/(8+4)
Normalized difference water index (NDWI)	(3-6)/(3+6)	(3-8)/(3+8)
Land/water	6,10,5	-
Urban	7,10,5	-
Bare earth	10,4,3	-
Sultan	(6/7, 6/2, 6/5*4/5)	
Lithology	7/4, 6/5, 5/3	

Some applications

- Vegetation mapping: e.g. crop/forest health, deforestation
- Disaster management: e.g. flood mapping, wildfire damage
- Land-cover classification
- Water quality monitoring: e.g. algal blooms, sediment loads
- And more...

Physical measurements vs. RS

Advantages and disadvantages

Advantages of RS:

- Global (or regional) coverage
- Regular time interval
- Many datasets are free to use

Disadvantages of RS:

- Indirect measurements, no absolute values, some kind of index or model is needed to convert the reflectances into information
- Spatial resolution can be (too) coarse, depending on application

Assignment: exploration of RS data

- Go to
 https://browser.dataspace.copernicus.eu
- Create a free account with you email
- Pick your own 'area of interest'
- What do you observe?
- Can you observe any interesting changes over time?
 - e.g. by creating timelapse or using compare panel
- Are there spatial differences within the area?

Other data links

Multispectral imagery

- USGS Earth Explorer: https://earthexplorer.usgs.gov/
- Copernicus Open Acces Hub: https://scihub.copernicus.eu/
- NASA Earth Data: https://search.earthdata.nasa.gov/
- EOS Landviewer: https://eos.com/landviewer

WaPOR (ET product)

data.apps.fao.org/wapor/?lang=en

Learn at your own pace

IHE Open Courseware: https://ocw.un-ihe.org/

- Water Productivity and Water Accounting using WaPOR (also available in Arabic)
 https://ocw.un-ihe.org/enrol/index.php?id=92
- WaPOR introduction (version 3)
 (including automated download through script)
 https://ocw.un-ihe.org/enrol/index.php?id=263

Global Head Office

Gouda - The Netherlands

Regional Office East Africa Addis Ababa – Ethiopia

www.acaciawater.com info@acaciawater.com

