

Hydrological cycle

What happens to the water quality in the hydrological cycle?

- Water compositions change through reactions with environment
 - host rock, oxygen contribution, etc.
- Water quality may yield information about environments through which water has circulated
- Chemical reactions are <u>time</u> and <u>space</u> dependent can provide info on residence times, flow paths and aquifer characteristics

Why care about the water chemistry?

- Helps us understand the hydrogeologic system
- Indicates mixing of GW and SW
- Helps us interpret GW / SW flow dynamics
- Delineates GW/ SW contamination

Factors controlling water chemistry

1. Rock type

- Waters draining igneous and metamorphic rocks (BUT there will always be exceptions – these are generalisations)
 - Total dissolved solids (TDS) <500mg/l
 - bicarbonate is the major anion
 - sodium and calcium are the major cations
- Waters draining limestones and dolomites
 - limestones weather more rapidly than igneous rocks, so generally limestone waters are more concentrated
 - TDS between 100 and 600 mg/l
 - calcium, magnesium, bicarbonate are the only significant solutes
- Waters draining sandstones, shales
 - most minerals unreactive in weathering environment

Factors controlling water chemistry

2. Relief

- as relief increases, rate of chemical weathering generally decrease
- difficult to evaluate importance of relief alone (correlate with rock type, climate, vegetation, etc.)

3. Climate

- more recharge, more dilution
- high temperature, more evaporation

4. Vegetation

- effect complex not independent of climate, rock type, relief
- vegetation supplies CO₂ and organic acids to soil = increased rate of chemical weathering

Concentrations

- Amount of the solute in the solvent
 - e.g., the amount of chloride dissolved in water
 - Mass of solute per volume of solution
 - most often expressed as mg/l or μg/l
 - Mass of solute per mass of solution
 - parts per million (ppm) or parts per billion (ppb);
 sometimes reported as mg/kg
 - Moles per volume (molarity) or moles per mass (molality)
 - Equivalents moles x charge of the atom

Concentration and unit conversion

Mass concentrations

Water analyses are most commonly expressed in terms of the mass contained in a liter of solution (mg L⁻¹, µg L⁻¹, ng L⁻¹)

$$mg l^{-1} = \frac{mass of solute (mg)}{volume of solution (l)}$$

Closely related to mg l⁻¹ is parts per million (ppm) or mg kg⁻¹

$$mg kg^{-1} = \frac{mass of solute (mg)}{mass of solution (kg)}$$

These two units are related through the density of the solution (ρ) or mass per unit volume.

Mass concentrations (continued)

The conversion factor between mg L⁻¹ and ppm is:

$$mg kg^{-1} = mg L^{-1} \times \frac{1}{\rho}$$

Because the density of many natural waters is near 1 kg L⁻¹, it is often a sufficiently good approximation that mg L⁻¹ and ppm are numerically equal.

Mass concentrations (continued)

Ambiguity can arise for some components of natural waters. For example, we can express the concentration of sulphate as mg L^{-1} SO₄²⁻ or mg L^{-1} sulphate-S. The relationship among these is:

$$\text{mg L}^{-1} \text{SO}_4^{2-} \times \frac{32.066}{96.06} = \text{mg L}^{-1} \text{ sulphate} - \text{S}$$

Molar concentrations

In most geochemical calculations, it is necessary to use molar concentrations rather than mass concentrations.

Molarity (M) = moles of solute/liter of solution Molality (m) = moles of solute/kg of solvent

If the density of the solution is significantly different from 1 kg L⁻¹, then molality and molarity will be quite different; however, in most natural waters, these quantities are nearly equal and the difference between them can be neglected.

Molar concentrations (continued)

Conversion from mol L^{-1} (M) to mg L^{-1} is accomplished using the formula:

$$mg L^{-1} = mol L^{-1} \times FW(g mol^{-1}) \times \frac{1000 mg}{g}$$

where FW is the formula weight of the substance in g mol⁻¹. The reverse conversion is accomplished using:

$$\text{mol } L^{-1} = \frac{\text{mg } L^{-1}}{\text{FW} \times 1000}$$

Equivalents and Normality

Equivalents (eq) are similar to moles, but take into account the valence of an ion. For example,

 $0.002 \text{ mol } L^{-1} \text{ of } Ca^{2+} = 0.004 \text{ eq } L^{-1} Ca^{2+}$

 $0.001 \text{ mol } L^{-1} \text{ of } Na^{+} = 0.001 \text{ eq } L^{-1} Na^{+}$

 $meq L^{-1} = mg L^{-1} / eq.wt$

meq L^{-1} = mg L^{-1} /(atomic weight/valence)

Normality (N) is another name for eq L⁻¹

Alkalinity is an important solution parameter that is expressed as eq L⁻¹ or meq L⁻¹. Hardness too.

Calculating Equivalence

Parameter	Sandstone Aquifer	
	mg/L	meq/L
Na ⁺	19	0.827
Cl ⁻	13	0.367
SO ₄ ²⁻	7	0.146
Ca ²⁺	88	4,391
${ m Mg^{2+}}$	7.3	0.6
HCO ₃ -	320	5.245
Total Anions		5.758
Total Cations		5.818
% Difference		1%

The atomic wt. of Sodium (valence of one) = 22.989

And its charge is one

Equivalent Concentration =
$$\frac{Concentration}{\left(\frac{Formula\ Weight}{Charge}\right)} = \frac{19}{\left(\frac{22.989}{1}\right)} = 0.827$$
Institute for

Basic chemical Parameters

- pH
 - Inverse log of hydrogen ion activity in the water
- Alkalinity
 - Ability of the water to neutralize an acid
- Specific conductance or Elec. conductivity
 - Ability of the water to conduct electricity
 - Increases with increasing TDS
- Total dissolved solids (TDS)
 - Everything dissolved in the water
- Hardness
 - Sum of the divalent cations, expressed as equivalent CaCO₃

pН

- pH = -log [H⁺], based on dissociation of water where [H⁺] x [OH⁻] = 10^{-14}
- Measures hydrogen ion concentration
- Logarithmic scale, from 0 (acidic) to 14 (basic)
- Influences the solubility of many elements - important in surface and ground water
- Most aquatic species sensitive to pH with limited range that they can live in

Alkalinity

- Alkalinity is a measure of the ability of water to neutralise acids
- It is the sum of the anions capable of pairing with hydrogen ions
- For most natural waters these are:
 - Bicarbonate, Carbonate and Hydroxide
- Under most environmental conditions CO₃²⁻ and OH⁻ can be ignored, so
- Alkalinity = HCO₃⁻ as mg CaCO₃ /l

Electrical Conductivity

- The electrical conductivity of water estimates the total amount of solids dissolved in water (TDS)
- TDS can be estimated in the field by measuring the electrical conductivity of the water
- Unit μS/cm (micro Siemens/cm)
 dS/m (deciSiemens/m)
 Where: 1000 μs/cm = 1 dS/m
- TDS $(mg/I) = 0.64 \times EC (\mu S/cm) = 640 \times EC (dS/m)$

Some studies use 0.65 as the constant

This relation provides an appox. estimate only!

Total Dissolved Solids (TDS)

- The TDS is the total amount of salts dissolved in the water
- TDS is measured in ppm (parts per million) or in mg/l
- At least 99.99% of the TDS comes from just 7 major ions:
- Nitrogen-based ions may also be present in significant quantity but are considered separately here, as they derive from biological and not geological sources

Hardness

- Hardness is the sum of the divalent cations, expressed as equivalent CaCO₃
- The major divalent cations are:
 - Calcium, Ca²⁺ and magnesium, Mg²⁺
- Though there may also be a minor contribution from:
 - Iron, Fe²⁺ and divalent manganese Mn²⁺
- Hardness = $(Ca^{2+} + Mg^{2+})$ as mg $CaCO_3$ /I
 - Occasionally it may be expressed as: mg Ca /l

Descriptions of water hardness

Hardness (mg CaCO₃ /I)

Description

0 - 50 soft

50 - 100 moderately soft

100 - 150 slightly hard

150 - 200 moderately hard

200 - 300 hard

> 300 very hard

Primary Constituents

- Primary cations and anions
 - Concentrations generally > 5 mg/L
 - Make up about 99% of the typical groundwater sample (by weight)
 - Bicarbonate
 - Calcium
 - Chloride
 - Magnesium
 - Silicon
 - Sodium
 - Sulphate

Minor/Trace Elements

- Minor constituents
 - Concentrations generally ranging from 0.1 –10 mg/L
 - Boron
 - Fluoride
 - Iron
 - Nitrate
 - Strontium
- Trace elements
 - Concentrations generally < 0.1 mg/L
 - Arsenic, Cobalt, Cadmium, Manganese, Nickel, Lead,
 Zinc

Sampling and Analysis Plan

Document written in advance of sampling that defines:

Sampling locations and frequency

How field parameters are measured

How samples are collected

Quality control and assurance measures

Do NOT go to the field without a plan!

Groundwater Sampling

- Important Points
 - Be sure to take a representative sample
 - Take field measurements with proper equipment
 - Make sure water bottles are properly rinsed
 - Filter and preserve samples in the field
 - Store on ice at 4° C
 - Try to analyse in laboratory within 24 hours of sampling
 - Have a quality control program with duplicates, blanks, field blanks, or spiked samples

WELL SAMPLING

- Calculate Well Volume:
 - Determine static water level
 - Calculate volume of water in the well casing
- Purge the well:
 - A minimum of three casing volumes is recommended.

Analysis of Water Samples

• Field:

 pH, specific conductance, temperature, dissolved oxygen, and alkalinity

Laboratory:

- Cations: sodium, calcium, magnesium, potassium, and iron
- Anions: bicarbonate, carbonate, sulfate, and chloride
- Trace Metals, Radioactivity

Ion Balance Error

- Aqueous solutions must be electrically neutral. In other words, the sum of all negative charges must equal the sum of all positive charges.
- One check on the quality of a water analysis is the ion-balance error (IBE) or charge balance error (CBE) is calculated.
- (1) Charge balance: \sum cations = \sum anions

(2) IBE/ CBE =
$$\frac{\sum \text{cations} - \sum \text{anions}}{\sum \text{cations} + \sum \text{anions}} x \ 100$$

Ion Balance Error

- There is always some error in the measurement of cation and anion concentrations.
- Thus, we cannot expect a charge-balance error of zero for any analysis.
- The I.B.E. may be positive or negative, depending on whether cations or anions are more abundant.
- A reasonable limit for accepting an analysis as valid is $\pm 5\%$.

Reasons for IBE values greater than ±5%

- An important anion or cation was not included in the analysis
 - Sometimes this can point out the presence of a high concentration of an unusual anion or cation.
- A serious error has occurred in the analysis
- One or more of the concentrations was recorded incorrectly
- Using unfiltered samples that contain particulate matter which dissolves upon addition of acid (for preservation purposes)

Water Classification

- Why?
 - Helps define origin of the water
 - Indicates residence time in the aquifer
 - Aids in defining the hydrogeology
 - Defines suitability

Water Classification

- How?
 - Compare ions with ions using chemical equivalence
 - Making sure anions and cations balance
 - Use of diagrams and models

Graphical representations of water geochemistry

Major ion composition of rain water

$$pH = 5.7,$$

 $TDS = 7 mg/l$

Major ion composition of groundwater

pH = 6 - 8, TDS = 100 - 300 mg/lComposition is highly variable, depending on geology 60 **50** Concentration (mg/l) 40 30 20 10 K Ca Mg CI **SO4** HCO₃

under the auspices of UNESCO

Major ion composition of seawater

$$pH = 8.2,$$

TDS = 34,400 mg/1

3 2.5 2 mg/1 Rain water 1.5 0.5 K Mg Na Ca CI **SO4** HCO₃ 60 **50** 40 Groundwater 30 mg/120 10 Na K Ca Mg CI **SO4** HCO₃ 20000 15000 mg/1 Seawater 10000 5000

Na

under the auspices of UNESCO

K

Ca

Mg

CI

SO4

HC₀3

Graphical representations of water geochemistry

- Rather than providing just a list, or table, of laboratory results, it is useful to view the geochemical composition in graphical form
- Techniques include:
 - Pie and bar charts
 - Stiff patterns (Kite diagrams)
 - Piper diagrams (ternary graphs)
- First it is necessary to express concentrations in terms of ionic strengths

Pie and bar charts

Stiff Diagrams

 Graphic representation of the water chemistry of a single sample

Stiff Diagrams

- Concentrations of cations are plotted to the left of the vertical axis and anions are plotted to the right (meq/L)
- The points are connected to form a polygon
- Waters of similar quality have distinctive shapes

Schoeller Diagrams

- Graph of concentrations of major ions
- Each sample has a specific shape to the curve; can be used to compare to other samples

Piper diagram

- Piper diagrams are tri-linear graphs representing the ionic strengths of the cations and anions.
- Plotting the data onto the tri-linear graphs takes a little practice
- Again, Na and K are plotted together
- There is no room on a Piper diagram for NO₃ as it is a purely geochemical method
- Plots each ion as a value normalized to 100%
- Data on the 2 triangles is projected on the quadrilateral

Piper diagrams

https://support.goldensoftware.com/hc/en-us/articles/115003101648-What-is-a-piper-plot-

Durov Diagram

Literature

- Geochemistry, groundwater and pollution-C.A.J. Appelo and D. Postma
- Applied Hydrogeology- C.W. Fetter
- Groundwater- R.A. Freeze and J.A. Cherry

You can download this here:

http://hydrogeologistswithoutborders.org/wordpress/original-groundwater-by-freeze-and-cherry-1979-now-available-online/

Answers

Slide 10

Molecular weight of SO_4^{2-} = 32.066 + 16x4 = 96.066

200 mg/l SO_4^{2-} x (32.066/96.06) = 66.8 mg/L sulphate-S

Slide 39

Identify the missing ion: could be carbonate or nitrate

