

Managed aquifer recharge and water harvesting from impermeable infrastructure surfaces

Urban water harvesting, roofs and solar panels

Dr. Maarten J. Waterloo

Dr. Brindha Karthikeyan

Oct 9, 2025

Aquifer recharge

Unintentional Recharge:

- Clearing of deep-rooted vegetation (e.g. deforestation)
- Deep seepage under irrigation areas
- Leaks from water pipes and sewers

Unmanaged Recharge:

- Stormwater drainage wells and sumps
- Septic tank leach fields
- Typically used for disposing of unwanted water without considering reuse.

Managed Recharge:

- Spreading methods
- Injection wells
- Infiltration basins and galleries
- Utilized for various water sources including rainwater, stormwater, reclaimed water, mains water, and water from other aquifers
- These methods ensure water is recovered for all types of uses

Aquifer recharge categories

- Unintentional Recharge:
 - Clearing of deep-rooted vegetation
 - Deep seepage under irrigation areas
 - Leaks from water pipes and sewers
- Unmanaged Recharge:
 - Stormwater drainage wells and sumps
 - Septic tank leach fields
 - Disposal of unwanted water without considering reuse.
- Managed Recharge:
 - Spreading methods
 - Infiltration basins and galleries
 - Injection wells
- Utilized for various water sources including rainwater, stormwater, reclaimed water, mains water, and water from other aquifers

Spreading methods

- Enhance gravitational infiltration and percolation of water to phreatic aquifers
- Surface spreading most applied MAR method
 - Construction of infiltration ponds (hafir) is the common method for the retention and spreading of water
- Soil aquifer treatment (SAT) quality of the feed water (stormwater or waste water treatment plant effluent) is further improved during soil passage (e.g. pathogen or nutrient removal)

In-stream structures

- Structures built in drainage channels that intercept or delay wadi / river run-off, thereby increasing riverbed infiltration time
 - Leaky and non-leaky dams
 - Subsurface dams
 - Sand dams
 - In-channel flow delay structures
- Mainly built in intermittent or ephemeral streams with distinct wet periods

Dry well or borehole recharge

 Gravitational recharge through shallow or deep structures such as dry wells, shafts, boreholes or pits.

Deep well injection:

- Aquifer Storage & Recovery (ASR)
- Aquifer Storage, Treatment & Recovery (ASTR)
- Shallow infiltration: wells/ shafts/ pits

Urban water supply challenges

Ecohydrological principle

- Precipitation falling on a surface is:
 - Temporarily stored on vegetation surface storage capacity
 - Evaporates from surface during and after precipitation
 - Drips/percolates from surface when storage is filled throughfall
- Rainfall interception = water lost to atmosphere by evaporation

■ Grassland: 1 - 5% of gross rainfall

Agricultural crops: 3 - 40% (but over short growing period)

Deciduous forest:
 10 - 25% (includes orchards)

Coniferous forest: 15 - 40%

■ Roof surfaces: 5 - 30%

Solar panel surfaces: Few data, 13%?

Percolating water can be captured and stored for later use

Important parameters for roof rainwater harvesting

- Climate: daily precipitation total P and evaporative demand
- Roof surface storage capacity S related to roughness of surface
 - RWH = 0 mm d⁻¹ for days with P < S
- Roof water runoff coefficient (R = Q/P)
 - If P > S, RWH = (P S) * R
- Roof water can be collected and stored in tanks / basins or in geological storage options

Roof water harvesting – traditional way in Aruba

Roof water harvesting potential studies, Jordan

- Yarmouk University: 91,000 m² roof and 37,100 m³ y⁻¹ water (Awawdeh et al., 2011)
- Al Ajloun region: 0.39 Mm³ in dry year (2017) and 0.96 Mm³ in wet year (2018).
 Equal to 8-17% of domestic water supply (Al-Houri and Al-Omani, 2022)
- Jordan country-wide:
 - 15.5 Mm³ y⁻¹ of rainwater from roofs of all residential buildings, assuming that all precipitation is collected. Equal to 6% of domestic demand in 2005 (Abdulla and Al-Shareef, 2009)
 - 30.5 Mm³ y⁻¹ equal to 8% of domestic demand (Abdulla, 2019)
- Much interest by society in installation of roof water harvesting systems, with demand for subsidies to cover high initial installation costs

Advantages and disadvantages roof water harvesting

- Extra supply of water to households, saves money on water bill
- Buffering of runoff during high precipitation, slow release of collected water as wastewater. This means a lower burden on sewer and drainage systems
- Decentralized water supply system (non-revenue loss)
- High installation costs and perhaps maintenance costs
- Two separated water systems needed in household (drinking and cooking from regular water supply; shower, toilet and other uses from harvested water)
- Storage limits and uncertain amounts of water harvested (dry years)
- How to guarantee water quality water treatment essential
- Who is responsible for proper operation and quality control

Solar panel water harvesting

- High demand for renewable energy and declining process for solar panels
- Transition to hydrogen economy needs abundant green energy
 - Production of 1 kg H₂ needs about 40-50 kWh of energy and 9 L of water
 - Household daily energy use < 5 kWh day-1
- The Ministry of Energy and Mineral Resources of Jordan is working on a National Green Hydrogen Strategy for Jordan
- Not much data on solar panel runoff from precipitation

Only one study globally for solar, done in Jordan

- Location Hai Al Sahabah, Al Muqabalayn, Amman
- Good water quality (EC = < 300 µS cm⁻¹)

Motor valves

Alazzam et al., 2024. GJESM 10(3): 1-14

ACACIAWATER

Geen hydrogen production potential in Jordan

- Green hydrogen depends on two key inputs:
 - Green electricity
 - Purified water
- Jordan has potential H₂
 production of about 4,700
 t H₂ km² a⁻¹ at cost of \$5
 per kg for solar energy

- Potential of about 800 t H₂ km² y⁻¹ at cost of \$4 per kg for wind energy
- Water needs for 2030: 5.3 Mm³ a⁻¹

Source: Ministry of Energy and Mineral Resources, 2023. National Green Hydrogen Strategy for Jordan, draft report

https://www.memr.gov.jo/EBV4.0/Root_Storage/AR/EB_Info_Page/GH2_Strate gy.pdf

Base scenario values for H₂ production, Jordan

By 2030, 0.59 MMT of H₂ will create over 11,000 jobs avoid 4.2 MMT CO2e emissions and require:

0.5MMT

\$28B

448km²

5GW

8GW

5.3M m³

for export

of investment

of land

of electrolyzer capacity

of wind and solar

of water

By 2040, I.5 MMT of H₂ will create over 30,000 jobs avoid 6.1 MMT CO2e emissions and require:

IMMT

1,204km²

13GW

22GW

 $14M \text{ m}^3$

for export

of investment

of land

of electrolyzer capacity

of wind and solar

of water

By 2050, 3.4 MMT of H₂ will create over 65,000 jobs avoid 8.2 MMT CO2e emissions and require:

2.3MMT

\$175B

2,6 I 4km²

29GW

47GW

3 IM m^3

for export

of investment

of land

of electrolyzer capacity

of wind and solar

of water

Source: Ministry of Energy and Mineral Resources, 2023. National Green Hydrogen Strategy for Jordan, draft report https://www.memr.gov.jo/EBV4.0/Root_Storage/AR/EB_Info_Page/GH2_Strategy.pdf

Criteria for power generation / energy harvesting

- Solar potential high
- Slope / aspect of terrain, not steep
- Area for establishment of solar farm close to, but outside of agricultural area
- Solar power plant close to urban / industrial area, good access
- Energy needs non-functional grid, hydrogen production plans
- Stakeholder and community support
- Security and protection of installations
- Maintenance training
- Energy tariffing system

Criteria for water harvesting

- Precipitation amount and seasonality, dry season length;
- Distance to infiltration / storage opportunities (groundwater wells);
- Need for dry season irrigation water, emphasis on water efficient techniques (drip irrigation);
- Observed water shortages;
- Soil degradation and erosion, warranting soil conservation measures;
- Stakeholder / community support;
- Labour and material availability
- Water tariffing system

Solar panel peak power rating and surface area

ACACIAWATER 19

Rainwater harvesting potential from photovoltaic energy systems in the Sahel

Household water needs: 50 m³ a⁻¹

Household Tier 4 energy: 4.5 kWh d⁻¹

H₂ production water: 15 L kg⁻¹ H₂

H₂ production energy: 40 kWh d⁻¹ kg⁻¹ H₂

Solar panel rainwater harvesting yield

Surplus rainwater harvesting yield at 1 kg d⁻¹ H₂ production

Percentage of household demand from Tier 4 solar system rainwater harvesting

Where precipitation exceeds 200 mm a⁻¹ combined solar energy and rainwater harvesting has potential to increase available water resources in the Sahel Region. High water gains are obtained when energy is harvested for H₂ production

PV power system rainwater harvesting potential Jordan

- Solar panel (350 W_p) water harvesting potential with cleaning water needs subtracted
- For H₂ production up to 200 mm a⁻¹ of precipitation on panel surfaces is required

ACACIAWATER

Solar panel arrays water yield hydrogen production

- Relation between mean annual precipitation and annual rainwater harvesting yield from PV panel arrays at daily production of 1 kg H₂ in the Sahel, includes PV panel cleaning and H₂ production water needs
- No surplus at P < 200 mm a⁻¹

Source: Waterloo et al., 2025. Water-Energy Nexus 8: 115-131

Excess water harvesting after H₂ production

- Areas where excess water can be harvested after extracting H₂ production water needs
- Extra water is needed for H₂
 production in red areas
 - Groundwater
 - Desalinated water

Summary

- Roof and solar panel systems can be used to collect water in urban or industrial areas
- In Jordan, part of the water needed for H₂ production can be obtained by water harvesting from the solar panels providing the energy for H₂ production
- Highest water yields in areas with higher precipitation
- This technique has not implemented yet anywhere in the world, research is needed (pilot study)

ACACIAWATER

Global Head OfficeGouda - The Netherlands

Regional Office East Africa Addis Ababa – Ethiopia

www.acaciawater.com info@acaciawater.com

