INDUSTRIAL WATER MANAGEMENT

WATER AND WASTEWATER IN INDUSTRY

Richard Hill

Whitewater Ltd, UK

Industrial Water Quality

Industrial Water Quality > Utilities Water Manufacturing Process Water > Water for Food and Drink Pharmaceuticals Industrial Wastewater > Manufacturing wastewater Utilities wastewater Disposal of liquid wastes

Definition of Water Quality

Water quality criteria

Class:	3	4	5	6	7	8	9
Туре:	Softened	Dealkalised	Deionised	Purified	Apyrogenic	High Purity	Ultrapure
Conductivity, µS/cm			20	5	5	0.1	0.06
Resistivity,			0.05	0.2	0.2	10	18
MΩ.cm							
TDS, mg/l			<10	<1	<1	0.5	0.005
pH			5.0 - 9.5	6.0 - 8.5	6.0 - 8.5	6.5 - 7.5	
LSI	-1 to +1	-1 to +1					
Hardness, mg/I CaCO ₃	<20		0.1	<0.1	<0.1		0.001
Alkalinity, mg/l CaCO3		<30					0.001
lons, mg/l							0.001
Silica, mg/l			0.5	0.1	0.1	<0.01	0.002
TSS, mg/l			<0.1	<0.1	<0.1	<0.1	ND
Turbidity, NTU			<0.5				
SDI			<5	<3	<3	<1	<0.5
Particle count, No/ml				1	1	1	0.1
COD, mg/l				<0.1	<0.1		
TOC, mg/l							0.05
Microorganisms, cfu/ml				<10	<1	<1	<1
Pyrogens, EU/ml					<0.25		<0.25

Definition of Water Quality

USE	INDUSTRY	APPLICATION	QUALITY
Fire Fighting	All		1 (natural)
Irrigation	Agriculture		1
Domestic	Offices	Drinking water	2 (potable)
	Hotels/Catering	Down services	2/3
	Healthcare	Laundries	3
Steam Raising	Process industries	Heating	3/4
		Steam stripping	3/4
		High pressure steam	5
	Power generation	Turbine drive	8
Heat transfer	Manufacturing	Closed heating and cooling systems	3/4
	Process industries	Open recirculatory cooling systems	3/4
	Offices Hotels/Catering	Air conditioning	5
	Healthcare		
Process water	Heavy chemicals	Product washing	2/3
	Fine chemicals	Solvent	4
	Food/soft drinks	Bottle/container washing	5
	Brewing	Cleaning in place (CIP)	2
	Pharmaceuticals		6/7
	Metal finishing		5
	Photographic		5
	Laboratories		8
	Semiconductor	"ultrapure water"	9
Product	Food/soft drinks	Product quality	4
	Brewing	Shelf life	2/4
	Pharmaceuticals	Parenterals	7
	Cosmetics	lotions/liquids/topicals	5/6

BOILER WATER TREATMENT

Thermal efficiency - scale/corrosion Waste minimisation - blowdown Condensate line protection Safety - boiler explosions Safety - turbine failures

BS2486:1978 Table 2

Total hardness in feed water, mg/l in terms of CaCO, max.	2	20	40	(a) second and been b
	Feed water	anog -1	R Hose Dominist	to reserve terms and the total tota
pH value Oxygen Total solids, alkalinity, silica Organic matter	7.5 to 9.5 1 1 1	7.5 to 9.5 t t t	7.5 to 9.5 † † †	 (b) (c) (d)
en el senere serene d'anne el serene certica	Boiler water	and due to	anouncess.	to wanted at to weat
Total hardness, mg/l in terms of CaCO3 max.	ND‡	ND	ND	e olistike 2001. Neve figures repre <u>ie</u> n
Sodium phosphate, mg/l as Na3PO4 §	50 to 100	50 to 100	50 to 100	(e)
Caustic alkalinity, mg/l in terms of CaCO ₃ min.	350	300	200	the actual feed and
Total alkalinity, mg/l in terms of CaCO3 max.	1200	700	700	Arrichments Th a n
Silica, mg/l as SiO2 max.	Less than (0.4 of the ca	ustic alkalin	ity to ansled south to
Sodium sulphite, mg/l as Na ₂ SO ₃ or	30 to 70	30 to 70	30 to 70	(b)
Hydrazine, mg/l as N ₂ H ₄	0.1 to 1.0	0.1 to 1.0	0.1 to 1.0	(b) o shore would be
Suspended solids, mg/l max.	50	200	300	(f)
Dissolved solids, mg/1 max.	3500	3000	2000	-

UNESCO-IHE Institute for Water Education

BS2486:1978 Table 3

	Boiler water		1	1				140
Sodium phosphate, mg/l as Na ₃ PO ₄ §	50 to 100	30 to 70	20 to 50	10 to 40	5 to 20	3 to 10	t	(f)
Caustic alkalinity, mg/l in terms of CaCO ₃ min.	300	150	60	30	10	5	2	(a)
Total alkalinity, mg/l in terms of CaCO3 max.	700	500	300	200	100	40	10	(g)
Silicat, mg/l as SiO ₂ max.	Less than (caustic alk		20	10	t t	T 294 00	of Islant to	(h)
Sodium sulphite, mg/l as Na2SO3	30 to 50	20 to 40	15 to 30	10 to 20	e, in ont <mark>e</mark> solte holte	tiyo) .melic	d diguositi o prisougli bi	(b)
or	tatos andeno	and in second	The second	biser yab sie	actoria (ilia	N BERG SUIDE	nteining ne intridin	CORESTS INT
Hydrazine, mg/l as N ₂ H ₄	0.1 to 1.0	0.1 to 0.5	0.05 to 0.3	0.05 to 0.1	trong of	e it elder rei	itions gt	(b)
Suspended solids, mg/l max.	200	50	-	T tourna	-particle o	i in sheite	e <u>co</u> carto inpit	(g)
Dissolved solids, mg/l max.	3000	2000	1200	700	350	100	15	(g)
Chloride, mg/l as Cl ⁻ max.	- (sc)12-	-	-0	pondomiano	10	5	1 1 1	and a sol

COOLING TOWER TREATMENT

scale corrosion Langelier Saturation Index bio-fouling public health (Legionella etc) waste (blowdown) minimisation

Company standards apply to:
plastics/synthetic organics manufacture
concrete production
metal finishing

US COMPANY'S INTERNATIONAL STANDARDS FOR AUTOMOBILES

	Chloride ASTM D512	Sulphate ASTM D516	Total Solids ASTM D1069	Conductivity ASTM D1125	pH ASTM E70
Final rinse after phosphating			1	20	5 – 7.5
Phosphating stages other than above	165	200	1050	1000	5 – 8
Clarified water for wet sanding	165	200	1050	1000	5 – 8
Final rinse after sanding			1	20	5 – 7.5
Water for electrocoating primers and other water thinnable paints			1	20	5 – 7.5
Final electrocoat rinse prior to subsequent painting			1	20	5 – 7.5

WIMPEY CONSTRUCTION STANDARD FOR CONCRETING WATER

Chloride content, max Sulphate content, max Inorganic impurities max pH value at 25°C Organic impurities mg/I CI mg/I SO₃ mg/I 500 1000 2000 6.6 – 9.2 If present refer to BS3148

SEMICONDUCTOR RINSE

ASTM Type E1 water

Resistivity >18.2MΩ.cm Inorganic contaminants ng/l TOC <5µg/l TVC < 1 cfu /l particles < 0.1/ml >0.03µm

Manufacturing Process Water Semiconductor systems Pre-treatment >RO MB ion exchange >UV 254nm >UV 185nm > Polishing MB > Polishing UF > PVDF pipework

Product Quality Standards
legislative
industry
company
Public Health
nitrates

- All water used in the factory for food ingredient, food washing or cleaning purposes must comply with the EC Drinking Water Directive 80/778/EEC.
- The water supplier must be notified that the site is a food manufacturing operation. Emergency notification and contact arrangements must be agreed.
- A nominated member of the senior management team must be responsible for water quality and crisis management.
- 4) There must be a good understanding of the source of the water supply and the on site storage and distribution system.
- 5) A documented risk assessment must be carried out and appropriate control measures implemented so that water continues to meet the specification required to ensure the quality and safety of St Michael food products.

These control measures must include:

- As necessary, water treatment systems to ensure the continued quality and safety of finished products.
- An appropriate water sampling and testing programme.
- A hygiene maintenance programme for the water system including storage tanks.
- 6) Membrane filtration to 1μ (absolute standard) or less must be in place to remove any protozoan oocysts (e.g. cryptosporidium) which may be present in the water except where there is adequate heat treatment in place for the finished product.
- 7) Where water is found not to comply with the EC Drinking Water Directive standard, or the factory has received a Boil Water Notice from the Water Company, a Marks & Spencer Food or Hygiene Technologist must be informed immediately by telephone.

FOOD INDUSTRY

Code of Practice for Water Quality and Safety at Marks & Spencer Food Suppliers

Institute for Water Education

U

on _____

Brewing and soft drinks
Water Supply (Water Quality) Regulations
international licence specifications
multi-product production
Cryptosporidium

		Melbourne	Pilsen	Pittsburgh	Munich	London	Vienna	Burton
Sodium	mg/l Na ⁺	5	3	20	1	24	8	30
Calcium	mg/l Ca ⁺⁺	2	7	32	80	90	200	268
Magnesium	mg/l Mg ⁺⁺	0.8	1	6	19	4	60	62
Bicarbonate	mg/I HCO ₃ ⁻	3.5	9	45	164	123	125	141
Chloride	mg/l Cl⁻	6.5	5	31	1	18	12	36
Nitrate	mg/I NO ₃ ⁻	0.2	0	0	3	3	1	31
Sulphate	mg/I SO4	1	6	72	5	58	120	638
TDS	mg/l	19	31	206	273	320	526	1206

INTERNATIONAL SOFT DRINKS MANUFACTURER

Constituent	Treated water maximum allowable concentration*
Appearance	Clear
Organic matter	None
Taste	None
Odor	None
Color, ppm	5.0
Turbidity, ppm	1.0
Total dissolved solids, ppm	500.0
Chiorides, ppm Cl	250.0
Sulphates, ppm SO ₄	250.0
Iron, ppm Fe	0.1
Total alkalinity, ppm CaCO,	50.0
Total hardness, ppm CaCO	Not applicable
Free chlorine, ppm ClO	0.0
Nitrates, ppm NO3	25.0 *
Fluoride, ppm F	1.0 .
Manganese, ppm Mn	0.05
Zinc, ppm Zn -	5.0
Copper, ppm Cu	0.05

*Use local standards for drinking water if more stringent than the above. Nitrate concentration must be reduced to 5 ppm if water will be used for canning.

UNESCO-IHE Institute for Water Education

Bottled water

mineral water regulations

➤ table water

The current legislation on Mineral Waters forbids:

"any treatment or other addition other than:

- a) the separation of unstable elements, such as iron and sulphur compounds, by filtration or decanting possibly preceded by oxygenation insofar as this treatment does not alter the composition of the water as regards the essential constituents which give it its properties
- b) the total or partial elimination of free carbon dioxide by exclusively physical method
- c) the introduction or re-introduction of carbon dioxide"

Bottled Water and its Treatment

- Table Water/Bottled Water
- Cannot be labelled "Mineral Water" or "Spring Water"
- Covered by The Food Safety (General Food Hygiene) Regulations 1995
- Has to comply with EU Water Quality Directive
- Can be (and usually is) treated
 - > Filtration
 - Iron removal
 - Arsenic removal
 - > GAC
 - ≻ RO
 - Ozonation
 - > UV

Pharmaceuticals

Pharmaceuticals
Patient safety
Drug efficacy
USP and FDA inspection

Pharmaceuticals

Criteria:

PHARMACEUTICAL AND HEALTHCARE

BP Ph Eur JP XIII USP26 FDA inspection

Patient safety Drug standards

Pharmaceuticals & Healthcare

Purified Water USP24 conductivity <1.3µS/cm at POU</p> ➤ TOC <100 µg/l</p> > pH 5 - 7 TVC <100 cfu/ml</p> Treatment usually RO/EDI Water for Injection > TVC <10cfu/ml pyrogens <0.25EU/ml</p> treatment by distillation or RO

Origins of Wastewaters

All manufacturing processes produce waste (3rd law of thermodynamics)

Evaporation losses leave a concentrated solution behind

The treatment of wastes may recover water and/or other materials but there will still remain a waste for disposal

Origins of Wastewaters

Wastes arise from:
Manufacturing processes
Utilities
Water treatment processes
Manufacturing processes vary so every industrial wastewater is different

Manufacturing Wastewaters

Inorganic contaminants
Metal finishing (plating and painting etc)
Automotive
Tanning
Chemical manufacture
Semiconductors

Manufacturing Wastewaters

Soft COD (biodegradable) *≻ tanning* > abattoir > soft drinks > brewing > papermaking > oil refining

Manufacturing Wastewaters

Hard COD (non-biodegradable)
pharmaceuticals
organic chemicals
plastics
oil/petrochemicals
timber treatment

Wastes from Utilities

Boiler blowdown

- steam boilers produce steam which leaves a concentrated "boiler water"
- Condensate recovery minimises the effect
- > "blowdown" limits the concentration
- ≻ high pH
- ➢ low oxygen
- ➤ conditioning chemicals
- high temperature (carbon footprint)

Wastes from Utilities

Cooling tower blowdown > cooling towers work by evaporation wastewaters are concentrated ➢ high TDS possible scaling potential (heat transfer) > biocides corrosion inhibitors scale inhibitors

Wastes from Utilities

Water treatment process liquid wastes
Oil separator wastes
Reverse osmosis - high TDS
Softening - highly saline
Deionisation - acid/alkaline
Evaporator residues - highly saline

Discharge to natural watercourse > may have environmental impact on receiving water Discharge to sewer > may increase load on sewage treatment works > may be toxic to activated sludge bacteria may be beneficial to STW operation

Typical discharge standards

		SEWER	SURFACE WATER
рН		6 - 10	6 - 10
sulphides	mg/l	1	
Fats, oils and grease	mg/l	100	10
sulphate	mg/l	1000	
toxic metals, total	mg/l	10	0.5
cyanide	mg/l	0.1	
suspended solids	mg/l	400	35
BOD	mg/l		25
COD	mg/l		125
Total nitrogen	mg/l		15
Total phosphorus	mg/l		2

Discharge to natural watercourse
standards set to protect the environment
dispersion and dilution in high river flows
dispersion and dilution in estuaries
offshore operations

Discharge to sewer

- charge by composition reflecting impact on sewage treatment works
- UK has developed the Mogden formula for charging

The Mogden Formula

$$\mathbf{C} = \mathbf{R} + \mathbf{V} + \mathbf{B} \frac{\mathbf{O}_{t}}{\mathbf{O}_{s}} + \mathbf{S} \frac{\mathbf{S}_{t}}{\mathbf{S}_{s}}$$

Where $C = effluent charge p/m^3$ R = a reception charge to cover sewer costs V = a charge to cover costs of preliminary treatment B = average cost of biological treatment $O_t = COD of effluent$ $O_s = average COD of sewage$ S = average cost of primary treatment $S_t = suspended solids of effluent$ $S_s = average suspended solids of sewage$

Cost of sewer discharge allows the economics of on-site treatment to be assessed:

- partial treatment to reduce COD will reduce sewer discharge costs
- full treatment to surface water discharge standards eliminates sewer discharge costs

Industrial Wastewaters

RECYCLING INDUSTRIA WASTEWATER SAVES MONEY !!!

