INDUSTRIAL WATER MANAGEMENT

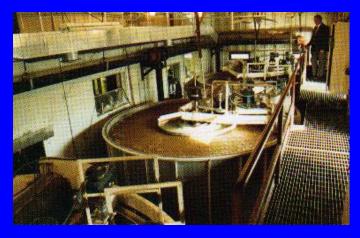
TREATMENT OPTIONS

Richard Hill Whitewater Ltd, UK

Wastewater Treatment Options

- > Treatment processes
- End of pipe treatment
- Segregation of waste streams
- > At source treatment

- Physical
- Chemical
- > Biological
- > Advanced Oxidation Processes


- Diluting a wastewater to comply with discharge standards is <u>not</u> treatment
- Removing a contaminant from one phase into another is <u>not</u> the same as destroying it

- Physical
 - ➤ membrane separation (MF, UF, RO)
 - > adsorption (GAC, silica, synthetics, etc)
 - > clarification
 - > stripping
 - > evaporation

DAF plant - dairy effluent

Evaporator - utility effluent

UF Module

- > Chemical
 - > neutralisation
 - precipitation
 - > coagulation
 - > oxidation/reduction
 - >ion exchange
 - > electrodialysis

Reduction - copper plating effluent

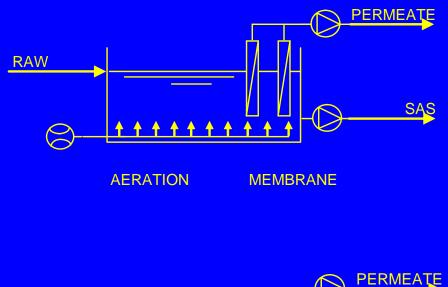
Ion exchange plant

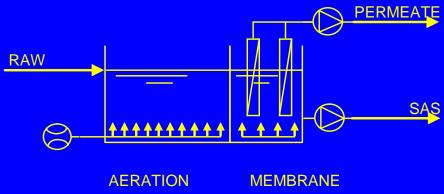
Lime neutralisation plant

- Biological
 - *>* aerobic
 - >activated sludge
 - **>** nitrification
 - ➤ N and P removal
 - "designer bugs"
 - > fungi
 - > PACT
 - > Anaerobic

Membrane bioreactor
Activated sludge plants

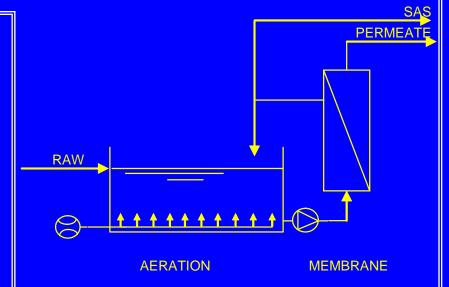
- Membrane bioreactors
 - Activated sludge biology
 - Biomass separation by membrane
 - > UF or MF
 - > MLSS 5000-10000mg/l
 - > Reduced footprint
 - > Low turbidity permeate
 - Disinfected by filtration
 - Permeate suitable for reuse or RO feed



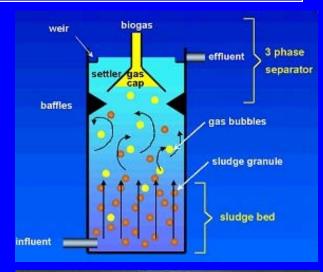


- Submerged
 - > Flat sheet
 - ➤ Usually in aeration tank
 - Aeration air reduces fouling
 - > Hollow fibre
 - ➤ Usually separate tank with coarse bubble aeration for fouling control

- > Flat sheet
 - > Polyethylene
 - > Formed as plate
 - ➤ Air bubbles keep surface clean
 - > 0.4µm pores


- > Hollow fibre
 - Formed as loose bundles
 - Air bubbles keep surface clean
 - ➤ May be in aeration tank or in a separate tank
 - >0.4-2.8mm OD
 - ► Predominantly PVDF

- > External
 - > Hollow fibre
 - Formed as loose bundles
 - Air bubbles keep surface clean
 - May be in aeration tank or in a separate tank
 - > 0.4-2.8mm OD
 - Predominantly PVDF



- Upflow Anaerobic Sludge Blanket (UASB)
 - First Biothane plant at Gist Brocades, Delft 1985 Low sludge production
 - Mainly used in industrial wastewater treatment
 - Fast settling granular sludge

- > Advanced Oxidation Processes
 - ▶ generation of OH*
 - Fenton's Reagent $(H_2O_2 + Fe^{2+})$
 - ozone/peroxide/UV
 - $\rightarrow UV/TiO_2$
 - > Ultrasonics
 - > Wet air oxidation
 - ➤ Supercritical water oxidation

Ozone generator

UV/Ozone reactor
UV irradiation chamber

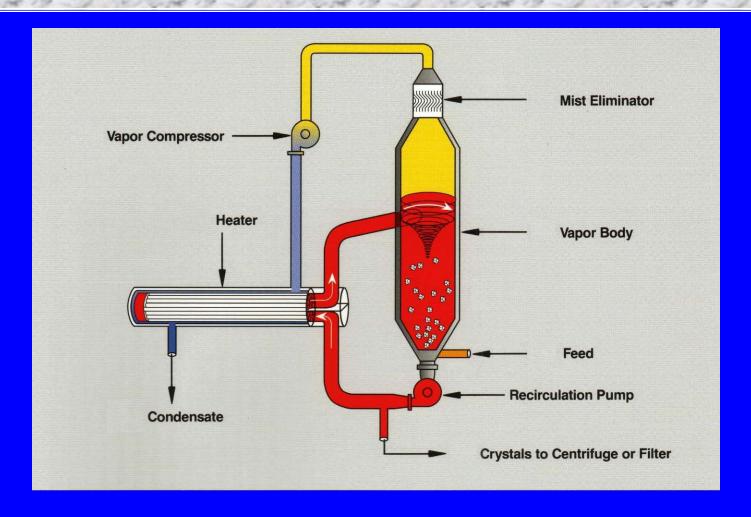
Pilot plant results for W3T ozone/UV unit April 2012 treating Bandar Tun Razak STW FE

Sample	COD (mg/L)	TOC (mg/L)	BOD (mg/L)	TOTAL COLIFORM (MPN)	E.COLI (MPN)	SUSPENDED SOLID (mg/L)	TURBIDITY (NTU)	рН	CONDUCTIVITY (µS/cm)
Raw IWK's effluent	16	5.9		198,630	54,750	5	2.12	7.08	261
Filtrate effluent	14	6.9		Not measured	Not measured	3.5	1.04	7.17	246
Effluent at W3T outlet (Treated effluent)	4	4.2		0	0	0.6	0.68	7.17	237
Treated effluent after 1 hour in product tank	3	4.7		Not measured	Not measured	1.4	0.42	7.22	217

Wet air oxidation

Loprox® wet air oxidation plant at Bayer treating 190tpd of pharmaceutical manufacturing wastewater commissioned 1993

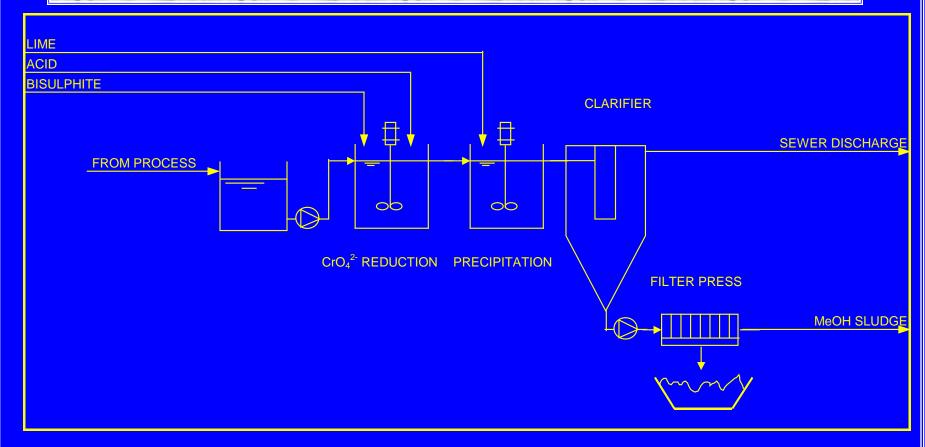
> 150 - 320°C 100 - 220 barg Oxidation to CO₂, N₂, water High capex and opex


ZERO LIQUID DISCHARGE

- > Technology
 - > membrane separations
 - > evaporation
- Limitations
 - > atmospheric emissions
 - > disposal of solid residue
- > Economics

ZERO LIQUID DISCHARGE

ZERO LIQUID DISCHARGE


End of Pipe Treatment

- Simple to install
- ➤ High flow
- > Mixture of contaminants
- Contaminant concentration may be low
- Difficult to achieve low residuals of specific contaminants
- Usually produces waste (eg sludge)

End of Pipe Treatment

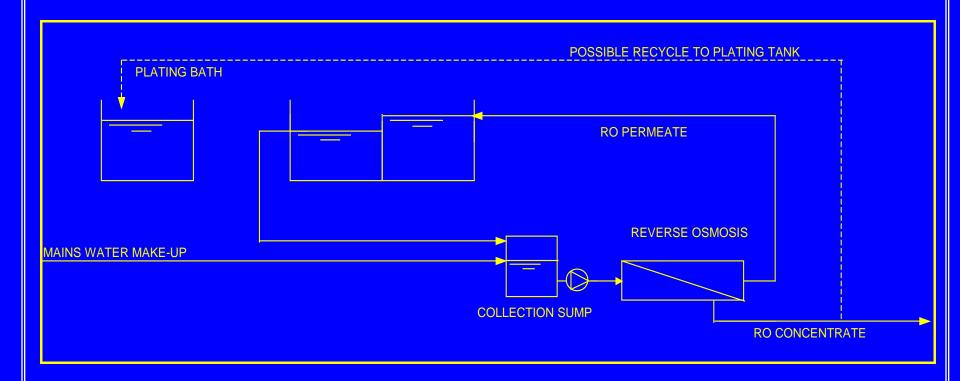
End of Pipe treatment for plating shop wastewater

Segregation of Wastes

- > Allows "at source" treatment
- Easy to implement on new build
- Identification of drains may be difficult in existing factories
- > Problems of batch process industries
 - > intermittent flows
 - varying composition in "campaigns"

At Source Treatment

- > Flows are smaller
- Specific to individual contaminants
- Contaminants are present in lower volumes therefore higher concentration
- > Plant is smaller



At Source Treatment

- ➤ At source treatment provides opportunities for recovery
 - > water
 - > raw materials
 - *>* energy
 - biogas from anaerobic digestion
 - heat recovery from evaporation

At Source Treatment

RO used at source to recover rinse water and plating solution

Wastewater Treatment Options

