Free Surface Hydrodynamics
2DH and 3D Shallow Water Equations
Applications

Prof. Dano Roelvink



Numerical models

« Grid types

— Rectilinear, curvilinear, unstructured
* Discretization

— Finite difference, finite volume, finite elements
* Solution methods

— Implicit vs explicit

— Explicit: hard stabillity criterion Al
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Grid types

* Rectangular
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Grid types

e Curvilinear, structured
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Grid types

 Unstructured, ‘Flexible Mesh’
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Numerical methods

* Finite difference
* Finite volume
* Finite element



Finite difference

From partial derivatives
to partial differences

For example: the
gradient of c in s-
direction

Easy to turn a PDE into oc C.
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Finite volume

« Change of contents of a
volume is sum of fluxes into
volume

 Great for conservation laws

« Example: change of volume
of a grid cell

 More difficult derivation

« Can be applied on
structured and unstructured
grids
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Finite element

Divide model up in small
elements, often triangles

Take field equations, PDEs

Approximate the field within
each element by a function

Assemble contribution from all
elements into a matrix

Solve matrix
Mathematically quite complex
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Applications

« San Francisco Bay & Delta model

« Mekong delta flows, tides, salinity, sediment
 Tidal current modelling (Texel, Singapore)

Storm surge prediction (Hurricane Ike, North Sea)
Detailed river modelling (Rhine branches)
Flooding (USA)

Water quality modelling

Morphology modelling (Bangladesh)
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Delta Dflow-FM Hydrodynamic Model

Developed by IHE
and Deltares for SF
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Tidal propagation
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Mekong

delta L

« PhD work Thanh Vo

« Part of large ONR ...
project on tropical
deltas

» Issues:
— Flow distribution
— Water levels
— Seasonal variation

— Sediment delivery to
coast

— Salinity intrusion
» Approach:
— 1D-2DH coupling  ==-
— 3D for coast and
estuaries
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3D Model of shelf and estuaries

o Structured 3D Delft3D model covers 7 estuarine branches in the
Mekong Delta

» Forced by tides, river flow, wind and waves
* Includes salinity and sediment transport processes.
« Validation by satellite imagery

» Derivation of upstream boundary conditions from unstructured delta
model

J

=
—
‘
O —
m
r
M
-

Enabling Delta Life

£ J



Sediment plumes

« Comparison of SSC with satellite imagery

sediment mud in layer 1 sediment mud in layer 1 sediment mud in layer 1
11-Jun-2009 030000 26-Jul-2009 03:00:00 23-Aug-2009 03:00:00

Suspended Particulate Matter ( g/m3) Suspended Particulate Matter (g/m3)
20020611 03:04:09 20020726 02:49:51
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Estuarine circulation

* See animations on www.openearth.nl

?

D =

EN0S (_‘l ‘:) t)g lC i

m
-
m
-
N




Texel, NL

IHE,







New Feature: Spatial Open-Sea Conditions by Satellite Altimetry
Singapore — SDWA - MustHave Box
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New Feature: Add Sea Level Anomaly to Tide Levels
. Validation Satellite Altimet

Research - Tidal (Groeund ) Stations
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Projects : Land Subsidence Jakarta » 3cm/ Year

Clients : Indonesia — World Bank
Research : Prediction Flooding Jakarta’ Roads to Airport
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Approx. Distance Sca
Hurricane lke o1t
September 11, 2008 :
4 PM CDT Thursday
MWS TPC/Mational Hurricane Center
Advisory 43
Current Center Location 26.0 N 89.4W
Max Sustained Wind 100 mph
Current Movement WNW at 10 mph
. Current Center Location
@® Forecast Center Positions
H Sustained wind > 73 mph
D Sustained wind < 39 mph
E..l\_ Potential Day 1-3 Track Area
I Hurricane Warning
Hurricane Watch
mmm [ropical Storm Warning




Example: Hurricane lke

A hydrodynamic model has been set up with the Delft3D system
running in 2D mode. The hurricane track used in this model was
downloaded from htip://weather.unisys.com/hurricane/ .

The model predicts surge levels of more than 5 metres above mean
sea level in both San Antonio Bay and Matagorda Bay.

To synthesize the hurricane, the in-house Wind Enhanced Scheme
(WES) was used. The WES scheme was originally developed by the
UK Meteorological Office based on Holland’s model (Holland, 1975).

The model resolution is 2 km and the bathymetry and land height
originates from one minute GEBCO gridded data
(http://www.gebco.net/data_and_products/gridded bathymetry data

J

=
—
‘
O —
m
r
M
-

Enabling Delta Life

£ J


http://weather.unisys.com/hurricane/
http://www.gebco.net/data_and_products/gridded_bathymetry_data/

)

—
=
——
==
=
—

D =

m
-
T
-

Enabling Delta Life

S







Detailed modelling
Rhine branches

Dutch Rhine branches

Measures: -
* Dredging

Pannerdensch Kanaal

« Channel narrowing by
groyne extension

Boven-Rijn

Ruhrgebiet

* Measures to correct bend profiles (main German

industrial and
urban area)
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2D numerical
model

Rhine branches:

annerdensch Kanaal

2 bifurcations
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Use of 2D numerical model

e m——

1. Model construction

2. Hydraulic calibration
3. Morphological N —L-.f,;_
calibration:

. one-dimensional
ii. two-dimensional

4. Verification
5. Application
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Projects: River Management / Maintenance RN
Clients : Rijkswaterstaat / Nat. Power (Japan) / USGS

Research :

sand bars i recirctl
S e e e

« Co-operation with USGS 2007-
present: Kees Sloff (Deltares), Scott
Wright, Jon Nelson (USGS)

« Validation of Delft3D for 3D turbulent
flow and morphology

depth averaged velocity
OF -Mar-2008 17:00:00
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Integrated numerical grids
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Project ‘Cypress Creek,
Texas, USA
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New FEMA Map, based on SOBEK
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Integrated SOBEK 1D-2D model

FEMA 1%
Floodplain
Boundary

HEC-RAS
Cross Section

Flow Node
HEC-HMS
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Input data: LIDAR data, ...
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1998 Flooded Structures Summary,

Computed vs. Observed

Ponding in Inches
Address Remarks
Observed @) Computed @
10502 Katy Hockley 8 -inch 9.6 -inch Finish Floor Unknown
10866 Katy Hockley 14 -inch 15.6 -inch Finish Floor Unknown
10870 Katy Hockley 22 -inch 22.8 -inch Finish Floor Unknown
26253 Sharp Rd 3-inch 4.8 -inch Finish Floor Unknown
26257 Sharp Rd Unknown 4.0 -inch Finish Floor Unknown
27010 Sharp Rd 20 -inch 20.4 -inch Finish Floor Unknown
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Texel morphology







Bangladesh Long-term Monitoring and
Modelling Project - CEIP

* Objectives:

— Large-scale tidal propagation and flow distribution: how do the tidal
amplitudes vary through the system and how is this expected to change
in the future?

— Sand and fine sediment distribution: how are different sediment
fractions distributed, where are they deposited and how will human
intervention and climate change affect this?

— Pathways for fine sediment: how does the fine sediment make its way
through the system and how does it end up in the Sundarbans?

— Morphology of major channels on decadal scales: can we understand
the major morphological changes GBM delta, what processes drives
them and how will this change under future scenarios?

— To provide boundary conditions in terms of large-scale bed elevation
change and sediment concentrations to smaller-scale models.
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Approach .

. Macro-scale 2DH model

— from Confluence to coast and
BoB, optionally including
Ganges and Jamuna

— Resolution from 8km to 500m
— Coarse but fast

*  Macro-scale 1D model
— Covers major branches

— Good representation of cross-
sections 400

— Lean and mean
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2010
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Silt concentration varying
through tidal and seasonal cycle







Validation 2000-2009
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Take home messages

* Go look for examples in your own field of
interest

* Try to find peer-reviewed publications of
the models you consider, don’t believe the
brochures

* Don’t believe the prettiest picture

* Always assume that the model is wrong
until proven otherwise

T IHE
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VWhen to use which model

« 1D
— narrow channels, L/W big

— networks of channels easily represented
— fast

— good representation of

« 2DH
— floodplains

— important horizontal variations in
bathymetry

forcing
geometry

Enabling Delta Life

£ J



VWhen to use which model

* Quasi-3D
— as in 2DH but with modifications to account for spiral flow (river
bends) or return flow (surf zone)

— same computational effort as 2DH (1 layer)

3D hydrostatic

— to resolve variations over the vertical, e.g. for water quality
« 02, nutrients, sediment concentration, ...
— in case of vertical variations of forcing, e.g. by density
differences (due to salinity, temperature)

— especially important when there is stratification, e.g. in deep
lakes

« 3D nonhydrostatic

— for local problems such as flow around bridge piles
IHE
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Tsunamis

Look up examples of studies

Are shallow water equations used?
If not, why not?

Why are they so destructive?



Review papers

Downloaded from http://rsta.royalsocietypublishing.org/ on November 29, 2018

PHILOSOPHICAL
TRANSACTIONS A

rsta.royalsocietypublishing.org

Review @

CrossMark

dlick for updates

Cite this article: Behrens J, Dias F. 2015 New

computational methods in tsunami science.
Phi. Trans. R. Soc. A 373: 20140382,
http://dx.doi.org/10.1098/rsta.2014.0382

Accepted: 29 July 2015

One contribution of 14 to a theme issue
“Tsunamis: bridging science, engineering
and society'.

Subject Areas:
mathematical modelling, wave motion

New computational methods
in tsunami science

J. Behrens' and F. Dias?

INumerical Methods in Geosciences, Department of Mathematics,
University of Hamburg, 20146 Hamburg, Germany

2School of Mathematics and Statistics, University College Dublin,
Dublin 4, Ireland

Tsunamis are rare events with severe consequences.
This generates a high demand on accurate simulation
results for planning and risk assessment purposes
because of the low availability of actual data from
historic events. On the other hand, validation of
simulation tools becomes very difficult with such a
low amount of real-world data. Tsunami phenomena
involve a large span of spatial and temporal scales—
from ocean basin scales of @(107)m to local coastal
wave interactions of @(10%)m or even @(10')m, or
from resonating wave phenomena with durations of
O(10°)s to rupture with time periods of O(10!)s.
The scale gap of five orders of maonitude in
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Application papers

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, FO1006, doi:10.1029/2010JF001797, 2011

Process-based modeling of tsunami inundation
and sediment transport

Alex Apotsos,' Guy Gelfenbaum,' and Bruce Jaffe”
Recerved 8 June 2010; revised 15 November 2010; accepted 30 November 2010; published 10 February 2011.

[1] The infrequent and unpredictable nature of tsunamis precludes the use of field
experiments to measure the hydrodynamic and sediment transport processes that occur.
Instead, these processes are often approximated from laboratory, numerical, and theoretical
studies or inferred from observations of the resultant sediment deposits. Here Delft3D,

a three-dimensional numerical model, 1s used to simulate the inundation and sediment
transport of a tsunami similar in magnitude to the 26 December 2004 Indian Ocean
tsunami over one measured and three idealized morphologies. The model is first shown to
match well the observations taken at Kuala Meunsi, Sumatra, and then used to examme
in detail the processes that occur during the tsunami. The model predicts that at a

given cross-shore location the onshore flow accelerates rapidly to a maximum as the
wavefront passes, and then eradually decelerates before reversing direction and flowing



Types of models

NSWE (COMCOT, Delft3D, XBeach)
Boussinesq (FUNWAVE, COULWAVE)
Nonhydrostatic (SWASH, XBeach-nonh)
Detailed CFD models (OpenFoam, SPH)
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- Introduction

- Background

- Fault Model

- Applications

- Updates

- Downloads

- Links
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Tsunami Generation Tsunami Propagation

COMCOT (Cornell Multi-grid Coupled Tsunami Model) is a tsunami modeling package,
capable of simulating the entire lifespan of a tsunami, from its generation, propagation and

runup/rundown in coastal regions.

Waves can be generated via incident wave maker, fault model, landslide, or even

customized profile. Flexible nested grid setup allows for the balance between accuracy and

The model has been used to investigate several historical tsunami events, such as the 1960
Chilean tsunami, the 1992 Flores Islands (Indonesia) tsunami (Liu et al., 1994; Liu et al,
1995), the 2003 Algeria Tsunami (Wang and Liu, 2005) and more recently the 2004 Indian
Ocean tsunami (Wang and Liu, 2006).
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COMCOT

- Introduction

- Background

- Fault Model

- Applications

- Updates

- Downloads

- Links
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COMCOT: Background Theory

¢ Governing Equations

S R -
il e
e _

COMCOT was developed based on Shallow Water Equations (SWE) in Spherical
Coordinates (Eqg.07) and Cartesian Coordinates (Eg.02). In the equations, [ denotes free

surface elevation: P and Q are volume flux in x and y direction (P=hu, Q=Mv). ¢ and  stand

for longitude and latitude, respectively.

ac 1 [ep @ ]
— + —+—lcos@Q) | =0
it Rceose|dy o |
aP h  &f i
— + & i fOo=0
&t Reosp Oy
50 h 6s .
c";'?”"'+ﬂ":ﬂ
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Eq.0] SWE in Spherical Coord.

aP e P ¢ PO o r.H

— 4+ — —| — |—-—1q' — 4 = ()
o ax\H | ovl H o P

70 (PO &0 ) S : |
L-:-.f Q'rfIQ +£HC ‘ =
&gt ox\H ) vl H) © b o

Eq.02 SWE in Cartesian Coord.
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XBeach 1755 Lisbon tsunami
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