TOT 2 Small-scale Water Treatment **4. Removal of Specific** Contaminants

Saroj Sharma

Associate Professor of Water Supply Engineering IHE Delft

Email: s.sharma@un-ihe.org

September 2021

www.un-ihe.org

Contents

- Introduction
- Iron and manganese removal
- Fluoride removal
- Arsenic removal

Removal of Specific Contaminants

- High concentrations of specific contaminants like iron, manganese, arsenic, fluoride or nitrate may be present in some water sources
- Method of removal depends on the type of the impurity or contaminant present in water sources
- Treatment methods like adsorption, chemical coagulation, ion-exchange and different types filtration, and their combinations are used for removing specific contaminants in centralized treatment systems
- Applying these methods for removing specific contaminants at household level is often challenging and complex

Iron and Manganese in Groundwater

Iron and Manganese

- common constituent of groundwater
- Iron up to 40 mg/L ; Manganese up to 5 mg/L

No health consequence of iron, taste threshold 0.3 mg/L; Taste threshold of manganese: 0.1 mg/L Guideline value of manganese: 0.05 mg/L

Problems with iron and manganese

- Staining, coloration, bad taste
- After-growth in the distribution system
- Incidence of increased turbidity
- Increased O&M cost for cleaning pipes

Iron Removal Methods

Forms of iron: Fe (II) dissolved (No oxygen) Fe (III) insoluble (oxygen present)

- Oxidation and Rapid Sand Filtration
 Oxidation
 O₂ (Aeration)
 Cl₂, KMnO₄, O₃ H₂O₂, ClO₂
- Limestone Filtration
- Oxidising Filters (Manganese green sand)
- Ion Exchange
- ** Manganese (present in dissolved form as Mn²⁺) is also removed to large extent together with iron by these methods.

Household-level iron removal system

(Aeration + Sand Filtration)

Kolshi Filter (Bangladesh)

Manual device for iron & manganese removal

Small-scale iron-manganese removal plant

Source: IRC (2002)

Fluoride in Groundwater

- Fluoride exists fairly abundantly in the earth crust
- primarily present as F⁻ ion
 or as a complex with aluminum, beryllium or iron
- Global problem affecting > 25 countries
 - concentration in groundwater: up to 12 mg/L

Sources of contamination in drinking water

- Natural: dissolution of fluoride bearing minerals
- Anthropogenic: agriculture and industry (fertilizer & aluminum factories)

Problems with Fluoride

Deficiency - dental caries of children (< 0.5 mg/L)

- **Excess** dental fluorosis, skeletal fluorosis
- **Dental Fluorosis** discoloured, blackened, mottled or chalky white teeth
- **Skeletal Fluorosis** severe and permanent deformation of bones and joints
- Fluorosis is irreversible and no treatment exist
- The only remedy is prevention: intake of fluoride within safe limits (from food and water)
- WHO guideline value for drinking water: 1.5 mg/L

Fluoride Removal Methods

- **1. Chemical Precipitation**
- 2. Adsorption
 - Bone char
 - Activated alumina
- 3. Ion exchange
- 4. Membrane Processes
 - Reverse Osmosis
 - Electrodialysis

Nalgonda Process for Defluoridation

 Chemical precipitation methods using alum, lime and bleaching powder

Source: Frencken (1990)

Domestic Defluoridation

Domestic Defluoridation using Bone Char

Source: WHO (2006)

A. Drum

B. Double Bucket

C. Column Filter

Activated Alumina-based domestic defluoridation system

Source: (IRC, 2002)

Arsenic in Groundwater

- Naturally occurring semi-metallic element, widely distributed in the earth's crust
- Arsenic concentration in groundwater: up to 12 g/L
- High arsenic concentration in groundwater A global problem affecting millions of people
- Arsenic in drinking water: no taste, no smell, not visible
- Most common species: As (V) : typically aerobic water As (III) : typically anaerobic conditions, low pH
- WHO guideline value for arsenic: 10 µg/L

Problems with Arsenic in Groundwater

- As is carcinogenic to human beings
 - skin cancer
 - internal cancers (lungs, urinary bladder, kidney)
- melanosis abnormal black-brown skin pigmentation
- de-pigmentation
- (hyper)keratosis (thickening) of palm and sole
- gangrene of the lower extremities
- kidney and liver failures

Arsenic Removal Technologies

- (Enhanced) coagulation using alum or ferric chloride followed by floc separation (sedimentation / filtration)
- Adsorption (activated alumina, ion exchange, granular activated carbon, iron oxide composites, iron oxide coated media)
- Lime softening
- Filtration through manganese-green sand filter (with KMnO₄ addition)
- Nanofiltration, Reverse Osmosis
- ** Challenges to apply these technologies at household level. Several POU arsenic removal systems are in use.

IHE Family Filter for Arsenic Removal

- POU arsenic removal system
- Adsorbent: Iron oxide coated sand
- Average filtration rate: 0.25 m/h
- Media depth : 1 1.5 m (depending on water quality)
- Filter size: 150 mm diameter; Production ~ 100 L/day
- Operated for > 18 months in Bangladesh without media replacement

Other POU Arsenic Removal Systems (used in Bangladesh)

Alcan Filter

(activated alumina)

Shapla Filter

(iron oxide bonded brick chips) **Star Filter**

Coagulation with iron chloride + sand filtration

KanchanTM Arsenic Filter (Arsenic Biosand Filter) Source: Murcott (2004) **Diffuser Basin** Lid **Brick chips** Container **Iron Nails** Water Flow rate: 15 L/hr **Fine Sand** Pipe -**Coarse Sand**

Gravel

22 Small-scale water treatment

Well-head Arsenic Removal System

Some remarks on household level water treatment systems in developing countries

- Household water treatment and safe storage is an essential component of a global strategy to provide safe water to all.
- Often household water treatment is cost-effective compared to conventional centralized water supply interventions.
- Several POU treatment systems are in use worldwide to remove different contaminants (mainly for filtration and disinfection).
- Long-term performance of many of these systems is not welldocumented.
- No reliable system or indicator to monitor performance of at household level.
- Users are often not aware of O&M requirements chemical dosing, media replacement, waste disposal etc.
- Some POU treatment systems in use are not robust and generally breakdown after few months of operation.

TOT 2 Small-scale Water Treatment **4.** Removal of Specific Contaminants

Thank you for your attention

www.un-ihe.org