Water Management in Coffee

- Water consumption
- Wet processing
- Wastewater sources
- Wastewater treatment
Water Management in Coffee

140 litres of water
Coffee Berry

1: centre cut
2: bean (endosperm)
3: silver skin (testa, epidermis)
4: parchment (hull, endocarp)
5: pectin layer
6: pulp (mesocarp)
7: outer skin (pericarp, exocarp)
Coffee Processing

- **Dry Process**
 - Cherries sorted and cleaned by winnowing or flotation
 - Cleaned cherries sun dried for 4 weeks
 - Machine-drying may be used to speed up the process after the coffee has been pre-dried in the sun for a few days
 - **Dry process used for**
 - 95% of the Arabica coffee produced in Brazil
 - Most of the coffees produced in Ethiopia, Haiti and Paraguay,
 - Some Arabicas produced in India and Ecuador
 - Most Robustas
Coffee Processing

- **Wet Process (mostly for Arabica)**
 - Cherries sorted by immersion in water (good ripe fruit sinks)
 - Skin and some pulp removed by pressing through a screen
 - Mucilage and pulp is removed by wet or dry fermentation
 - Fermentation breaks down cellulose 12-36 hours
 - Washing
 - Drying
Coffee Processing

- Semi-wet process
 - Cherries de-pulped to remove the pericarp
 - Mucilage removed mechanically in upflow
 - Used in Colombia and Mexico to reduce water consumption
 - Semi-washed processing requires less time than washed processing but quality is inferior
Coffee Processing

- **Becolsub**
 - Developed in Columbia taken from Beneficio ECOLogicos SUB-productos
 - Reduces water contamination by up to 90% compared to wet processing
 - Pulping without water
 - Mucilage removed mechanically using <1m3 water per tonne coffee
 - Mucilage is a potential by-product.
Coffee Processing

- The amount of water used in processing depends on the process.
- Recycling of water in the de-pulping process can drastically reduce the amount needed.
- Without reuse, consumption can be up to 20 m³/tonne.
- With reuse and improved washing techniques, consumption of 1 to 6 m³/tonne is achievable.
Coffee Processing

<table>
<thead>
<tr>
<th>Country</th>
<th>Process</th>
<th>Water use m3/tonne cherry</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>Semi-washed, wet processing</td>
<td>3</td>
</tr>
<tr>
<td>Kenya</td>
<td>Fully washed, reuse of water</td>
<td>4-6</td>
</tr>
<tr>
<td>Colombia</td>
<td>Fully washed and environmental processing (BECOLSUB)</td>
<td>1-6</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>Fully washed, recycling use of water</td>
<td>4-8</td>
</tr>
<tr>
<td>Vietnam</td>
<td>Semi wet and fully washed</td>
<td>4-15</td>
</tr>
<tr>
<td>Vietnam</td>
<td>Traditional, fully washed</td>
<td>20</td>
</tr>
<tr>
<td>India</td>
<td>Traditional, fully washed</td>
<td>14-17</td>
</tr>
<tr>
<td>Brazil</td>
<td>Semi-washed, mechanical demucilage</td>
<td>4</td>
</tr>
<tr>
<td>Mexico</td>
<td>Semi-washed, mechanical demucilage</td>
<td>3.4</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>Traditional, fully washed</td>
<td>16</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>Fully washed, reuse of water</td>
<td>11</td>
</tr>
</tbody>
</table>
Two sources of wastewater

- Pulping (~55% of volume)
- Washing (~45% of volume)

Both wastewaters contain sugars which begin fermenting to ethanol and acetic acid causing reduction in pH from ~7 to ~3-4
Pulping Wastewater

- Raw wastewater high insoluble COD up to 50,000mg/l
- After screening COD 5,000 – 9,000
- TN 50 – 110mg/l
- TP 9 – 15mg/l
- Sugars, proteins, pectins, (polysaccharide carbohydrates), acids polyphenolics (tannins) and alkaloids (caffeine)
- Fermentation begins and pH falls depending on length of contact time (min 4.2)
Wastewater

- Fermentation/washing water
 - Washing of the fermented beans
 - Pectins, proteins and sugars.
 - Concentration falls as washing progresses
 - COD 7,000mg/l initial – 50mg/l final
 - TN 150mg/l initial – 40mg/l final
 - TP 16mg/l initial – 8mg/l final
 - pH 4 initial – 7 final
Wastewater treatment

- Coffee processing is a batch process so wastewater no constant
- Pectin precipitates at low pH
- For anaerobic treatment or constructed wetland pH 6.5 - 7.5
- pH correction by CaOH$_2$ solubilises pectins COD increases from an average of 3.7 g/l to an average of 12.7 g/l.
- Flavonoids from the skin of the cherries increase colour
- Polyphenolics and flavonoid compounds may be removed by aerobic fungi
Khe Sanh Vietnam

Wastewater Treatment Process:
- **Wastewater** enters the system.
- **ACID POND** with a 6h HRT, pH 3-4.
- LIME addition for pH adjustment to 6-7.
- **UASB** unit for biogas production.
- **SETTLEMENT** for settling.
- **WETLANDS** for further treatment.
- **HYACINTHS** for final purification.
- **Discharge** to the lake.

Key Parameters:
- **pH**:
 - ACID POND: 3.8
 - NEUT: 6.1
 - UASB: 6.2
 - SETTLING: 6.5
 - WETLAND: 6.5
 - HYACINTH: 7.0
 - DISCH: 7.0
- **BOD**:
 - ACID POND: 20,000
 - NEUT: 10,000
 - UASB: 1,000
 - SETTLING: 800
 - WETLAND: 400
 - HYACINTH: 200
 - DISCH: 200
Wastewater

- Acid fermentation
 - Floating mucilage scum
 - Setting of solids
- Neutralisation
 - Produces calcium acetate
- UASB generates biogas
- Anaerobic settlement
- Re-aeration
- Wetlands planted with reeds
- Water hyacinth pond
Instant Coffee

- **Roasting**
 - rotating cylinders at 165 °C for 8–15 minutes
 - fluidized bed for 1-4 minutes
- **Grinding** to 0.5–1.1mm
- **Extraction with water** in 5-10 percolation columns at 155 to 180 °C
- **Coffee solution** to about 15-30%
- **Drying**
 - Freeze drying
 - Spray drying
Instant Coffee

- **Spray drying**
 - 5–30 seconds 270°C
 - Moisture content in 75-85% out 3-3.5%

- **Freeze drying**
 - Rapid freezing
 - Drying under vacuum
 - Condensation of water vapour
Instant Coffee

CLEANING & BLENDING → ROASTING → GRINDING & EXTRACTION

HYDROLIZE → AROMA

CENTRIFUGATION → FREEZE CONCENTRATION

SPRAY DRYING → TO STORAGE

FREEZE DRYING → TO STORAGE

LIQUID FILLING → TO COLD STORAGE

UNESCO-IHE
Institute for Water Education

Whitewater Limited
Consulting Engineers & Scientists
Instant Coffee

- Wastewater
 - Batch processing
 - Extraction wastewater
 - coffee grounds COD 10,000mg/l
 - High colour
 - Cleaning in place water
 - Alkaline detergents COD 1,000mg/l
Instant Coffee

- Spent coffee grounds adsorb a range of heavy metals including:
 - Cadmium
 - Lead
 - Copper
 - Zinc

- Can be used for wastewater treatment