Contents

PREFACE
XII

INTRODUCTION
XIV

1 **WATER TRANSPORT AND DISTRIBUTION SYSTEMS**
1.1 Introduction
1.2 Definitions and objectives
1.2.1 Transport and distribution
1.2.2 Piping
1.2.3 Storage
1.2.4 Pumping
1.3 Types of distribution schemes
1.4 Network configurations
2 **WATER DEMAND**
2.1 Terminology
2.2 Consumption categories
2.2.1 Water use by various sectors
2.2.2 Domestic consumption
2.2.3 Non-domestic consumption
2.3 Water demand patterns
2.3.1 Instantaneous demand
2.3.2 Diurnal patterns
2.3.3 Periodic variations
2.4 Demand calculation
2.5 Demand forecasting
2.6 Demand frequency distribution
3 **STEADY FLOWS IN PRESSURISED NETWORKS**
3.1 Main concepts and definitions
3.1.1 Conservation laws
3.1.2 Energy and hydraulic grade lines
3.2 Hydraulic losses
3.2.1 Friction losses
3.2.2 Minor losses
3.3 Single pipe calculation
 3.3.1 Pipe pressure 76
 3.3.2 Maximum pipe capacity 78
 3.3.3 Optimal diameter 81
 3.3.4 Pipe charts and tables 82
 3.3.5 Equivalent diameters 84
3.4 Serial and branched networks
 3.4.1 Supply at one point 87
 3.4.2 Supply at several points 88
3.5 Looped networks
 3.5.1 Hardy Cross methods 92
 3.5.2 Linear theory 98
3.6 Pressure-related demand 100
3.7 Hydraulics of storage and pumps
 3.7.1 System characteristics 103
 3.7.2 Gravity systems 105
 3.7.3 Pumped systems 109
 3.7.4 Combined systems 117

4 THE DESIGN OF WATER TRANSPORT AND DISTRIBUTION SYSTEMS 122
4.1 The planning phase 122
 4.1.1 The design period 123
 4.1.2 Economic aspects 125
4.2 Hydraulic design 130
 4.2.1 Design criteria 130
 4.2.2 Basic design principles 132
 4.2.3 Storage design 136
 4.2.4 Pumping station design 143
4.3 Computer models as design tools 148
 4.3.1 Input data collection 150
 4.3.2 Network schematisation 152
 4.3.3 Model building 153
 4.3.4 Nodal demands 155
 4.3.5 Model testing 158
 4.3.6 Problem analysis 159
4.4 Hydraulic design of small pipes 160
 4.4.1 Equivalence Method 160
 4.4.2 Statistical methods 162
4.5 Engineering design 163
 4.5.1 Pipe materials 165
 4.5.2 Joints 178
 4.5.3 Fittings 181
 4.5.4 Valves 182
 4.5.5 Water meters 187
 4.5.6 Fire hydrants 194
4.5.7 Service connections 196
4.5.8 Indoor installations 197
4.5.9 Engineering design of storage and pumping stations 197
4.5.10 Standardisation and quality assessment 203

5 NETWORK CONSTRUCTION 206
5.1 Site preparation 207
5.1.1 Excavation 208
5.1.2 Trench dewatering 212
5.2 Pipe laying 213
5.2.1 Laying in trenches 213
5.2.2 Casings 215
5.2.3 Laying above ground 215
5.3 Pipe jointing 220
5.3.1 Flanged joints 220
5.3.2 Gland joints 220
5.3.3 ‘Push-in’ joints 221
5.3.4 Anchorages and supports 221
5.3.5 Backfilling 223
5.3.6 Testing and disinfection 223

6 OPERATION AND MAINTENANCE 226
6.1 Network operation 226
6.1.1 Monitoring 228
6.1.2 Network reliability 230
6.1.3 Unaccounted-for water and leakage 235
6.1.4 Corrosion 248
6.2 Network maintenance 256
6.2.1 Planning of maintenance 257
6.2.2 Pipe cleaning 259
6.2.3 Animal disinfection 263
6.2.4 Pipe repairs 264
6.3 Organisation of water company 267
6.3.1 Tasks 267
6.3.2 Mapping 268
6.3.3 Structure and size 270
6.3.4 Example 272

APPENDIX 1 WORKSHOP PROBLEMS 277
A1.1 Water demand 277
A1.2 Single pipe calculation 280
A1.3 Branched systems 283
A1.4 Looped systems 288
A1.5 Hydraulics of storage and pumps 291
APPENDIX 2 DESIGN EXERCISE

A2.1 Case introduction – the Town of Safi
 A2.1.1 Topography
 A2.1.2 Population distribution and future growth
 A2.1.3 Supply source
 A2.1.4 Distribution system
 A2.1.5 Water demand and leakage
 A2.1.6 Financial elements

A2.2 Questions
 A2.2.1 Hydraulic design
 A2.2.2 System operation

A2.3 Hydraulic design
 A2.3.1 Preliminary concept
 A2.3.2 Nodal consumptions
 A2.3.3 Network layout
 A2.3.4 Pumping heads and flows
 A2.3.5 Storage volume
 A2.3.6 Summary of the hydraulic design

A2.4 System operation
 A2.4.1 Regular operation
 A2.4.2 Factory supply under irregular conditions
 A2.4.3 Reliability assessment

A2.5 Final layouts
 A2.5.1 Alternative A – Direct pumping
 A2.5.2 Alternative B – Pumping and balancing storage
 A2.5.3 Phased development
 A2.5.4 Cost analyses
 A2.5.5 Summary and conclusions

APPENDIX 3 MINOR LOSS FACTORS

A3.1 Bends and elbows
A3.2 Enlargements and reducers
A3.3 Branches
A3.4 Inlets and outlets
A3.5 Flow meters
A3.6 Valves

APPENDIX 4 HYDRAULIC TABLES (DARCY–WEISBACH/COLEBROOK–WHITE)

APPENDIX 5 SPREADSHEET HYDRAULIC LESSONS – OVERVIEW

A5.1 Single pipe calculation
A5.2 Pipes in parallel and series
A5.3 Branched network layouts
A5.4 Loop network layouts