BIOLOGICAL DENITRIFICATION George Ekama Mark Wentzel Water Research Group Dept of Civil Engineering University of Cape Town Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekami # OUTLINE (1) - Benefits - Design principle - N removal mechanisms - The bio-process - Impact on oxygen demand - Impact on alkalinity - Requirements - Systems Online Course on Biological Wastewater Treatment: Principles, Modelling and Design # OUTLINE (2) - Anoxic Aerobic reactor Mixed liquor Waste flow recycle Sudge recycle - Denitrification kinetics - Denitrification potential - Principles in design procedure - Importance of influent TKN/COD ratio - Effect of oxygen recycling - Design example - Reactor volumes and oxygen demand - Closure Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekami #### **BENEFITS** - Reduction in effluent nitrate conc - Reduction of rising sludge in SSTs - Reduction in oxygen demand - Recovery of alkalinity - Higher reactor pH - Reduced aggression to concrete Whenever nitrification is possible, include denitrification even if not required! Online Course on Biological Wastewater Treatment: Principles, Modelling and Design #### **DISADVANTAGES** - Will require longer sludge age to ensure nitrification. With denitrification.. - ...reactor volume is larger - …less WAS produced but more stable - Mixed liquor recycle pumps - Slightly more complex system Benefits of denitrification far outweigh disadvantages! Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekama ### **DESIGN PRINCIPLE (1)** - For aerobic conditions, problem is to calculate mass of oxygen (electron acceptor) required for utilization of known mass of organics (electron donors). - For anoxic conditions, problem is opposite: Need to calculate mass of electron donors (organics, COD) required for utilization of known mass of electron acceptors (nitrate). Online Course on Biological Wastewater Treatment: Principles, Modelling and Design # DESIGN PRINCIPLE (2) - Calculation for nitrate removal is essentially a reconciliation of electron acceptors (nitrate) and donors (WW or dosed organics, COD) taking due consideration of ... - (1) Biological kinetics of denitrification, - (2) System operating constraints (anoxic reactor size and recycle ratios). Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekama #### N REMOVAL FROM WW Two main processes of N removal – - (1) Sludge production N incorporated in AS and removed via waste activated sludge (WAS) - (2) Biological denitrification – NO₃⁻ → N₂ gas. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design #### N REMOVAL VIA WAS - N content of WAS ≈ 0.10 mgN/mgVSS. - Includes N in active (X_{BH}), endogenous (X_E) and inert solids (X_I) of WAS. - Removes 15-20% of influent TKN –% decreases with increase in - sludge age (†), - temperature (†), - influent TKN/COD (↑) - and with settled WW. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekami # N REQUIREMENTS FOR SLUDGE GROWTH - (1) FSA not used for sludge growth is nitrified to nitrate. - (2) Influent biodeg OrgN adds to FSA pool in reactor and nitrified. - (3) All nitrate produced available for denitrification. EFFLUENT TKN Liquid phase N in Gas phase N in SLUDGE Solid phase ~75% N nitrified (transformed in liquid phase) and possibly denitrified (transferred to gas phase) Nti Online Course on Biological Wastewater Treatment: Principles, Modelling and Design #### THE BIO-PROCESS - The process biological reduction of nitrate (NO_3^-) and nitrite (NO_2^-) to nitrogen gas (N_2) by ordinary heterotrophic organisms (OHOs). - Consequence of bio-redox reactions to obtain energy for growth (catabolism) under anoxic conditions (NO₃⁻ & NO₂⁻ but no DO). - Called dissimilative denitrification (assimilative denitrification is NO₃ reduction to NH₃ for biomass growth - anabolism). Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. El #### STOICHIOMETRY Nitrate to nitrite: $NO_3^- + 2H^+ + 2e^- \rightarrow NO_2^- + H_2O + Energy$ Nitrite to nitrogen gas: $NO_2^- + 4H^+ + 3e^- \rightarrow \frac{1}{2}N_2 + 2H_2O + Energy$ Usually nitrate is reduced directly to N₂ gas: $NO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}N_2 + 3H_2O + Energy$ H⁺ and e⁻ supplied by organics ## O₂ EQUIVALENT OF NO₃- Nitrate reduction to N₂ gas (anoxic): $$NO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}N_2 + 3H_2O + Energy$$ Oxygen reduction to water (aerobic): $$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$ So e⁻ accepting capacity of nitrate = $(32/4) / (14/5) \rightarrow 2.86 \text{ mgO/mgNO}_3 \text{-N}$ (Organics are e-donor) Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Eka # **OXYGEN RECOVERY (1)** - Nitrification consumes 4.57 mgO/mgN - Denitrification recovers 2.86 mgO/mgN - So 2.86/4.57 = 63% of nitrification oxygen demand can be recovered by denitrification - Since complete denitrification often is not possible, about 50% of nitrification oxygen demand can be recovered by denitrification. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design #### **ALKALINITY GENERATION** - $NO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}N_2 + 3H_2O + Energy$ (5H+ from organics + 1H+ from bulk liquid) - Denitrification uses 1H⁺ per mol NO₃-N to N₂ - = $1/14*50 = 3.57 \text{ mg/l CaCO}_3$ generated per mgNO₃-N/I denitrified. - Nitrification consumes 7.14 mg/l CaCO₃. - So denitrification recovers half the alkalinity lost in nitrification. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Eks # REQUIREMENTS FOR DENITRIFICATION - (1) Presence/input of nitrate - (2) Absence of DO (unaerated zone) - (3) Facultative heterotrophic biomass - (4) Suitable electron donor (organics). # (A) PRESENCE OF NITRATE - Source of nitrate is nitrification. - Therefore nitrification is prerequisite for denitrification. - System sludge age R_s must be longer than minimum for nitrification R_{sm}, or... - ..Anoxic zone must not exceed maximum unaerated sludge mass fraction (f_{xm}). #### (A) REQ'MTS for NITRIFICATION The maximum unaerated sludge mass fraction (f_{xm}) allowed at a sludge age of R_s to ensure nitrification with a safety factor of S_f is – $$f_{xm} = 1 - S_f (b_{AT} + 1/R_s)/\mu_{AmT}$$ and then effluent FSA conc is given by $$N_{ae} = K_{nT} / (S_f - 1)$$ N_{ae} lower if f_{xt}<f_{xm} Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekam #### (B) ABSENCE OF DO DO is inhibitory on denitrification DO = 0 mg/l -- Denitrification 100% DO = 0.5 mg/l - Denit < 10% Even if DO conc is zero in reactor, DO entering reactor is used first, reducing the nitrate removal by the reactor. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design ### (B) SOURCES OF DO - High conc in recycles from aerobic zone (Keep < 1-2 mgO/I). If DO too low in aerobic, will get anoxic pockets – simultaneous <u>denitrification</u>. - Entrainment at air/liquid interface from high mixing energy - Entrainment in recycle flows screw pumps, cascades, hydraulic jumps. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekama #### (C) FACULTATIVE BIOMASS - Ability to denitrify widespread among OHOs - In AS systems, significant number of OHOs are facultative (can denitrify). - Little difference in bacterial populations in fully aerobic and anoxic –aerobic systems. - Aerobic AS requires few days to acclimatize to denitrify at full capacity. Online Course on Biological Wastewater Treatment: Principles, Modelling and Desig #### (D) ELECTRON DONOR - Organics serve as electron donor (ED). - Sources of organics are..... - ...(1) Internal ED present in wastewater - ...(2) Self generated (ED) via endogenous respiration - ...(3) External (ED) dosed to system e.g. methanol or other organics. - (1) and (2) are of most interest in WWT. - (3) is used to get very low effluent nitrate. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ex #### DENITRIFICATION CONFIGURATIONS - Different configurations for denitrification have been developed depending on type of electron donor... - (1) ... Wuhrmann self generated ED - (2) ... Modified Ludzack-Ettinger (MLE) internal ED - (3)...4 stage Bardenpho internal and self generated ED but methanol dosed into 2ary anoxic is external ED. #### (C) 4 STAGE BARDENPHO - Pre+Post denit system. - 1º + 2º anoxic reactors. Methanol - Influent organics utilized in 1^{ary} anoxic. - Complete denit possible for low TKN/COD. - Methanol often dosed to increase denit. rate Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Rem Chapter on Nitrogen Removal presented by George A. Ekam #### DENITRIFICATION MODEL - Design principle match supply rate of e⁻ acceptors (NO₃⁻) and supply rate e⁻ donors (organics ≡ denit. potential) - Find denitrification potential (D_D) of anoxic reactor - Match NO₃- load on anoxic (N_L) to this potential - Need steady state denitrification model to calculate denitrification potential - Develop model from experimentally observed denitrification behaviour in plug flow primary and secondary anoxic reactors. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design #### **DENITRIFICATION KINETICS (1)** - From literature and data, express denit rate d(NO₃-N)/dt = - K X_v mgNO₃-N/(l.d) - K = specific denitrification rate mgNO₃-N/(mgVSS.d) - However, K₁ K₂ K₃ rates varied widely... - As R_s increased, K rates decreased. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekami #### **DENITRIFICATION KINETICS (2)** - Re-evaluated data by assigning K rate to OHO conc mediating denitrification... d(NO₃-N)/dt = - K X_{BH} mgNO₃-N/(I.d) K = active OHO specific denitrification rate mgNO₃-N/(mgOHOVSS.d) - X_{BH} obtained from steady state model. - K rates now more consistent with sludge age (R_s). Online Course on Biological Wastewater Treatment: Principles, Modelling and Design #### **DENITRIFICATION K RATES (1)** Large data base of profiles at 14 and 20°C - $K_1 = 0.72 (1.2)^{(T-20)} (halves in 4°C)$ $K_2 = 0.101 (1.08) (T-20) (halves in 9°C)$ $K_3 = 0.072 (1.03) (T-20) (halves in 23°C)$ Note units of K: mgNO₃-N/(mgOHOVSS.d) - K₁ = strongly temperature sensitive - K₃ = weakly temperature sensitive as weak as endog. respiration rate. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekama #### **DENITRIFICATION K RATES (2)** At 20°C; K_{2 20} > K_{3 20} At 12°C; $K_{2 12} \approx K_{3 12}$ This has implications in design – At 20°C; K₂ denitrifies better than K₃ At 12°C; K₂ denitrifies same as K₃ but primary anoxic still has K₁ rate, which makes primary anoxic always better than secondary anoxic Online Course on Biological Wastewater Treatment: Principles, Modelling and Design # BASIS FOR K₁ RATE (1) - From experimental data found that conc of NO₃-N removed by K₁ rate (ΔN_{n1s}) is proportional to influent biodeg COD (S_{bi}). - This gave clue that K₁ rate was due to utilization of influent RBCOD (S_{bsi}) Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekam # BASIS FOR K₁ RATE (2) Constant of proportionality between ΔN_{n1s} and influent biodeg COD (S_{bi}) is α, so... $$\Delta N_{n1s} = \alpha S_{bi}$$ where $\alpha = f_{bs} (1-f_{cv}Y_{Hv})/2.86$ f_{bs} = influent RBCOD fraction: S_{bsi} = f_{bs} S_{bi} $(1-f_{cv}Y_{Hv})/2.86 = e^{-} \text{ to NO}_{3}^{-} \text{ (catabolism)}.$ Online Course on Biological Wastewater Treatment: Principles, Modelling and Design #### **BASIS FOR K RATES** - Concluded from NO₃⁻ time profiles that -K₁ related to utilization of RBCOD K₂ related to utilization of SBCOD K₃ related to endogenous respiration rate - This provided the basis to integrate denitrification into AS kinetic simulation models. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekama # BASIS FOR K_1 RATE (3) In simulation models, utilization of RBCOD is modeled with the Monod equation – so K₁ is $$K_{1} = \frac{(1 - Y_{H})f_{cv}}{2.86Y_{H}} \frac{J_{H}}{K_{S} + S_{S}} \text{ where } \frac{S_{S}}{K_{S} + S_{S}} \approx 1$$ $$mgNO_{3} - N/(mgOHOVSS.d)$$ - So with $K_1 = 0.72$, $Y_H = 0.67$, $\mu_H \approx 2.8/d$. - In range of μ_H measured in AS systems 1 to 4 /d. μ_H varies with reactor mixing regime high in plug flow reactors, low in completely mixed. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design #### STEADY STATE MODEL - From denitrification kinetics... Δ(NO₃-N)/Δt = K X_{BH} mgNO₃-N/(I.d) - Apply to an anoxic reactor definitions - $^{\circ}$ $\Delta N_{nr} = K X_{BH} R_{ha} = reactor nitrate removal mgNO₃-N/(I flow through reactor.d)$ - R_{ha} = actual ret time of anoxic reactor - $\Delta N_{ns} = K X_{BH} R_{hn} = \text{system nitrate removal}$ mgNO₃-N/(I influent flow through system.d) - R_{hn} = nominal ret time of anoxic reactor. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design - This is the system NO₃–N removal (/litre influent) by K₃ rate in 2^{ary} anoxic - $\overline{D}_{p3} = \Delta N_{nss} = K_3 X_{BH} R_{hns} mgNO_3 N/I influent$ - But R_{hns} = V_{axs} /Q_i - So D_{p3} = K₃(X_{BH}V_{axs})/Q_i where (X_{BH}V_{axs})/ Q_i is OHO mass in 2^{ary} anoxic per I influent flow, which is obtained from COD removal steady state model. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design # DENIT. POTENTIAL OF SECONDARY ANOXIC (2) - Defining the 2^{ary} anoxic sludge mass fraction f_{x3} as (X_{BH}V_{axs})/(X_{BH}V_p), then - $D_{p3} = K_3 f_{x3} (X_{BH} V_p / Q_i)$ - But (X_{BH}V_p/Q_i) = mass OHOs in system/I Q_i which = S_{bi} Y_{Hv}R_s/(1+b_HR_s) - So D_{p3} = S_{bi} K_3 f_{x3} $Y_{Hv}R_s$ /(1+ b_HR_s) mgNO₃-N/I influent Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekami # DENIT. POTENTIAL OF PRIMARY ANOXIC (1) - This is the system NO₃–N removal (/litre influent) by K₁ + K₂ rates in 1^{ary} anoxic - $D_{p1} = \Delta N_{nps} = \Delta N_{n1s} + \Delta N_{n2s}$ - From before $\Delta N_{n1s} = S_{bi} f_{bs} (1-f_{cv}Y_{Hv})/2.86$ - And similarly to K_3 in 2^{ary} anoxic $\Delta N_{n2s} = S_{bi} K_2 f_{x1} Y_{Hy} R_s / (1 + b_H R_s)$ mgNO₃-N/I influent $f_{x1} = 1^{ary}$ anoxic sludge mass fraction Online Course on Biological Wastewater Treatment: Principles, Modelling and Design # DENIT. POTENTIAL OF PRIMARY ANOXIC (2) So adding nitrate removal by K₁ (RBCOD) and K₂ (SBCOD) rates.... $$D_{p1} = S_{bi} f_{bs} (1-f_{cv}Y_{Hv})/2.86 + S_{bi} K_2 f_{x1} Y_{Hv} R_s/(1+b_H R_s) mgNO_3-N/I influent$$ - Note D_{p1} depends on... - (1) influent biodeg COD conc (S_{bi}), - (2) influent RBCOD fraction (f_{bs}) and - (3) primary anoxic mass fraction (f_{x1}) . Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ek # DENIT. POTENTIAL OF PRIMARY ANOXIC (3) - D_{p1} increases as 1^{ary} anoxic mass fraction increases, - but must be larger than minimum (f_{x1min}) to utilize all influent RBCOD. - It is inefficient to not use all RBCOD in 1^{ary} anoxic. #### MINIMUM 1 ary ANOXIC It can be shown that minimum primary anoxic sludge mass fraction (f_{x1min}) is.. $$f_{x1min} = (1+b_{HT} R_s)/(K_{1T} Y_H R_s) \cdot f_{bs} (1-f_{cv}Y_h)/2.86$$ - At 14°C and sludge age $(R_s) > 10$ days, $f_{x1min} \approx 0.08...$ - So primary anoxic reactors must have mass fractions (f_{x1}) > 0.10 to ensure all influent RBCOD is utilized to denitrify. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekama #### DENIT. POTENTIAL - D_p = maximum concentration of nitrate per litre influent flow that an anoxic reactor can denitrify. - Called potential because whether or not it is achieved depends on the nitrate load (N_L) on the anoxic reactor.... - ..if N_L < D_p: performance < potential - ..if N₁ = D_n: performance = potential (objective) - ..if N₁ > D_n: performance < potential Online Course on Biological Wastewater Treatment: Principles, Modelling and Design ### **DESIGN PROCEDURE (1)** - Depends on objectives e.g. maximize N removal or protect BEPR from nitrate. - (1) From WW chars (μ_{Am20} , T_{min}) determine f_{xm} and R_s interactively to ensure nitrification (most critical decision!). - (2) From N_{ti}, N_{ai} and R_s, calculate N_c - (3) From S_{ti} & f_{bs} and f_{xm} & R_{s} , find D_{p1} - (4) is $D_{p1} > or < N_c$ - Gives idea of extent of N removal. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekama # **DESIGN PROCEDURE (2)** - The higher N_{ti}, the higher N_c - The higher S_{ti} & f_{bs}, the higher D_{p1} - So influent WW TKN/COD ratio gives indication of extent of N removal possible. - For R_s >15d, T_{min} = 14°C, f_{xm} = 0.5-0.6, extent of N removal depends mainly on WW TKN/COD and RBCOD fraction (f_{bs}). - Guide: If TKN/COD<0.09 for f_{bs} ≈0.25, near complete N removal can be achieved with WW organics only in 1^{ary} and 2^{ary} reactors. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design # DESIGN PROCEDURE (3) - If a very low effluent NO₃- conc is required (<5 mgNO₃-N/I) and WW TKN/COD ratio is >0.09, consider subdividing anoxic mass fraction into 1^{ary} and 2^{ary}, and dose methanol into 2^{ary}. - With dosing, 2^{ary} acts like a 1^{ary} so add a RBCOD term to D_{p3} Eq. Yield (Y_{Hv}) for methanol is lower than the usual 0.45 mgVSS/mgCOD AS value. - Adjust design parameters (R_s, f_{xm}, f_{x1}, f_{x3}, a) until economical design is obtained. - This design procedure is demonstrated with some examples. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekama #### PROCEDURE DEMO: MLE (1) DO in recycles O_a and O_s mg/l • If NO₃ conc exiting anoxic is zero (i.e. D_{p1}≥N_L) then NO₃ conc in aerobic is N_c/(a+s+1), i.e. NO₃ conc per influent generated in aerobic diluted into flow through aerobic reactor. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design #### Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Ren Chapter on Nitrogen Removal presented by George A. Ekam #### **MAXIMUM PRACTICAL** a - If influent TKN/COD ratio is low, a_{opt} is high (>5). - Increasing a from 5 to 6:1 only removes 2% (<1 mgN/l) more NO₃ not worth pumping costs. - Practical upper limit to a (a_{prac}) ~ 5:1. - If a_{prac} < a_{opt}, anoxic is under-loaded (D_{p1} not fully used) options... - (1) reduce anoxic size $(f_{x1}) \rightarrow$ reduction in sludge age $(R_s) \rightarrow$ smaller system volume, or - (2) Keep as safety factor (no change). Online Course on Biological Wastewater Treatment: Principles, Modelling and Design #### **BALANCED MLE SYSTEM** • A balanced MLE system is one with a sludge age (R_s) and influent TKN concentration (N_{ti}) in which f_{x1} = f_{xm} and a_{opt} = a_{prac} (say 5:1) so that this a_{prac} loads the anoxic reactor exactly to its denitrification potential. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekama #### **BALANCED MLE SYSTEM** - Calculation of sludge age (R_s) which balances MLE cannot be done directly. - Easiest is to use equations we have and calculate N_{ti} for selected R_s, plot N_{ti} vs R_s, and select R_s for required N_{ti}. - Do NOT need any new equations! - Procedure: - (1) For selected R_s , calculate f_{xm} for u_{Am20} , T_{min} and S_f . - (2) Provided $f_{xm} = f_{x1} > f_{x1min}$, calculate D_{p1} . Online Course on Biological Wastewater Treatment: Principles, Modelling and Design #### **BALANCED MLE SYSTEM** - (3) Select a_{prac} and set = to a_{opt} - (4) Calculate nitrification capacity (N_c) from NO₃ load - denit potential Eq..... $$N_{n/p} = \left[\frac{N_c}{(a+s+1)} + \frac{O_a}{2.86}\right] a + \left[\frac{N_c}{(a+s+1)} + \frac{O_s}{2.86}\right] s = D_{p1}$$ (5) Calculate N_{ti} from $$N_{ti} = N_c + N_s + N_{ae} + N_{ousi} [N_{ae} = K_{nT}/(S_{f}-1)]$$ Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekan # **BALANCED MLE SYSTEM** Raw WW TKN/COD 0.08 #### EFFECT of TKN/COD on a - If system R_s is not changed when a_{prac} under-loads anoxic with NO₃, it is important to know sensitivity of system to influent TKN/COD ratio variation. - For accepted R_s, plot a_{opt} and N_{nemin} versus TKN/COD ratio for varying influent TKN conc (Need no new equations!) - (1) Select N_{ti} , calculate N_c , a_{opt} and N_{nemin} - (2) If $a_{opt}>a_{prac}$, set $a_{opt}=a_{prac}$, else $a_{prac}=a_{opt}$ Online Course on Biological Wastewater Treatment: Principles, Modelling and Design # EFFECT of TKN/COD on a-recycle and Effluent NO₃ (2) If influent TKN/COD ratio is high (>0.10), - a_{opt} is low and $< a_{prac}$ (= 5:1) - effluent NO₃ is high, > 5 and up to 15 mgNO₃-N/l depending on influent TKN/COD ratio. - If low effluent NO₃ is required, subdivide anoxic into 1^{ary} and 2^{ary} anoxic reactors and dose methanol into 2^{ary} anoxic – details in notes. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekama ## REACTOR VOLUMES (1) - Calculated N removal without knowing anoxic zone volume or retention time, only mass fractions (f_{xt}, f_{xm} f_{x1}, f_{x3}). - System reactor volume is the same whether fully aerobic or anoxic-aerobic at the same sludge age (R_s)! - System volume is fixed by organic load (kgCOD/d) and sludge age (Chapter 4). - From definition 1^{ary} anoxic sludge mass fraction f_{x1} = (X_{tp}V_{axp})/(X_tV_p), Online Course on Biological Wastewater Treatment: Principles, Modelling and Design # **REACTOR VOLUMES (2)** - In the MLE, anoxic reactor X_t (MLSS) conc is same as aerobic reactor X_t, so volume fractions = mass fractions. - If f_{x1}= 0.45, then 1^{ary} anoxic volume = 0.45 (45%) of system reactor volume. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekam # **OXYGEN RECOVERY (1)** - NO₃ mass denitrified = (N_c-N_{ne})Q_i kgN/d. - Hence Oxygen Demand (OD) saved MO_d = 2.86(N_c-N_{ne})Q_i kgO/d. - So OD to be supplied to aerobic zone MO_t = MO_c + MO_n MO_d kgO/d. OUR in aerobic is higher than for fully aerobic because net OD has to be supplied into a smaller aerobic reactor Anoxic Aerobic reactor Waste flow recycle Studge recycle Online Course on Biological Wastewater Treatment: Principles, Modelling and Design # DENIT: SUMMARY (1) - (1) Wastewater characteristics needed for design: - Influent TKN/COD ratio - Influent RBCOD fraction - Wastewater minimum temperature - Maximum specific growth rate of nitrifiers. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekama ### DENIT: SUMMARY (2) - (2) Most important decisions in design: - Sludge age (R_s) and unaerated (anoxic) mass fraction (f_{xm}, f_{xt}) which is done interactively. - a recycle ratio. - Subdivision of anoxic mass fraction into 1^{ary} and 2^{ary} K₃ so low that 2^{ary} anoxic is only selected if methanol is to be dosed to get very low effluent NO₃ (endogenous respiration releases ammonia, reduces N removal to ~80% of NO₃ denitrified). Online Course on Biological Wastewater Treatment: Principles, Modelling and Design ### DENIT: SUMMARY (3) - (3) Effect of denitrification on system: - Sludge age will be longer since nitrification is obligatory – larger reactor volume. - Reduction in oxygen demand over fully aerobic system with nitrification. - Increase in alkalinity and pH. - Reduced rising sludge problems in SSTs Denitrification should always be included where nitrification is possible. Online Course on Biological Wastewater Treatment: Principles, Modelling and Design Chapter on Nitrogen Removal presented by George A. Ekama # DENITRIFICATION - CONCLUSION - Design and economics of ND systems are mainly governed by requirement to nitrify – this fixes sludge age of system and hence reactor volume. - Sludge age and anoxic mass fraction selected interactively, so extent of denit needs to be known. - Achieving nitrification depends on the maximum specific growth rate of nitrifiers – varies in different wastewaters – measure or choose low value. - Extent of denitrification (N removal) depends on influent TKN/COD ratio and RBCOD fraction of wastewater – need to be measured on WW! Online Course on Biological Wastewater Treatment: Principles, Modelling and Design