Greywater Use for Agricultural Irrigation in Urban and Peri-urban Areas

Lumka Salukazana¹, S. Jackson², N. Rodda¹, M. Smith¹, T. Gounden², N. Macleod² and C. Buckley¹

¹ University of KwaZulu-Natal; ² eThekwini Municipality
Introduction

Water crisis in South Africa

• Average rainfall 450mm/year
• 60% total water demand is for agricultural use
• Increased fresh water demand

Alternative sources need to be investigated

→ Wastewater reuse
 Toilet waste (black water)
 Non-toilet waste (greywater)
Grey water represents an environmental problem
 • Unpleasant odours
 • Health hazards
 • Soil erosion
 • Pollution of surface water by runoff
 • Mosquito breeding

Benefits of grey water reuse
 • Reduce water shortage
 • Reduce environmental degradation, eutrophication and health hazards
 • Reclaim wasted nutrients
 • Alleviate food shortages and poverty
Greywater re-use simultaneously addresses environmental and social needs.

Preliminary community trials by eThekwini Municipality were promising:

- community acceptance
- good yield of above-ground crops
Aims

Semi-field greywater irrigation trials were conducted to investigate:

- Effect of greywater on plant growth and yield
- Plant growth patterns over different seasons
- Microbiological contamination of the produce
Experimental design

Eight households selected from nearby community contributed greywater daily, pooled on site.

Three treatments
- Tap water
- Nutrient-amended water solution
- Greywater (experimental treatment)

Both leafy (above ground) and root (below ground) crops represented
- 25 replicates per treatment for
- Above ground:
 - spinach and green pepper
- Below ground:
 - carrots and beetroot

Results from crop cycles 2-4 of 6 crops cycles presented
- 1st crop cycle: pest problems
- crop cycles 5 and 6: results still being analysed
Plant growth and yield monitoring

Weekly growth measurements
- Plant height and stem diameter
- Number of leaves
- Leaf area
- Number of fruits

- *Results for plant heights presented here*

Yield measurements on crops
- Fresh weight
- Dry weight

- *Fresh weights presented here*
Plant heights, above-ground crops

Crop cycle 2

A. SPINACH

<table>
<thead>
<tr>
<th>Time (weeks)</th>
<th>Mean plant height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.00</td>
</tr>
<tr>
<td>2</td>
<td>15.00</td>
</tr>
<tr>
<td>3</td>
<td>18.00</td>
</tr>
<tr>
<td>4</td>
<td>20.00</td>
</tr>
<tr>
<td>5</td>
<td>22.00</td>
</tr>
<tr>
<td>6</td>
<td>24.00</td>
</tr>
<tr>
<td>7</td>
<td>26.00</td>
</tr>
<tr>
<td>8</td>
<td>28.00</td>
</tr>
<tr>
<td>9</td>
<td>30.00</td>
</tr>
<tr>
<td>10</td>
<td>32.00</td>
</tr>
</tbody>
</table>

B. GREEN PEPPER

<table>
<thead>
<tr>
<th>Time (weeks)</th>
<th>Mean plant height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.00</td>
</tr>
<tr>
<td>2</td>
<td>10.00</td>
</tr>
<tr>
<td>3</td>
<td>15.00</td>
</tr>
<tr>
<td>4</td>
<td>20.00</td>
</tr>
<tr>
<td>5</td>
<td>25.00</td>
</tr>
<tr>
<td>6</td>
<td>30.00</td>
</tr>
<tr>
<td>7</td>
<td>35.00</td>
</tr>
<tr>
<td>8</td>
<td>40.00</td>
</tr>
<tr>
<td>9</td>
<td>45.00</td>
</tr>
<tr>
<td>10</td>
<td>50.00</td>
</tr>
</tbody>
</table>

Graphs

- Greywater
- Nutrient solution
- Tap water

Legend

Spinach

Peppers
Plant heights, below-ground crops
Crop cycle 2

C. CARROT

D. BEETROOT
Plant heights, above-ground crops
Crop cycle 3

Spinach

A. SPINACH

Peppers

B. GREEN PEPPER
Plant heights, below-ground crops
Crop cycle 3

C. CARROT

D. BEETROOT
Stem heights, above-ground crops
Crop cycle 4

Spinach

Peppers

A. SPINACH

B. GREEN PEPPER
Plant heights, below-ground crops
Crop cycle 4

Carrot

C. CARROT

Beetroot

D. BEETROOT
Spinach

Total Yield

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
</tbody>
</table>

Peppers

Total Yield

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
</tr>
</tbody>
</table>
Total Yield

Carrot

C. CARROT

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean fresh weight (g)</td>
<td></td>
<td>700.00</td>
<td>600.00</td>
<td>500.00</td>
</tr>
</tbody>
</table>

Graph showing mean fresh weight of carrots across different treatments.

Beetroot

D. BEETROOT

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean fresh weight (g)</td>
<td></td>
<td>150.00</td>
<td>100.00</td>
<td>50.00</td>
</tr>
</tbody>
</table>

Graph showing mean fresh weight of beetroots across different treatments.
Conclusions

- Using greywater as a nutrient source produced increased plant heights and yields similar to that obtained when using chemical fertilizers.

- Grey water represents a potential resource for food production – but safety and site-specific factors must be investigated on a site by site basis.

- Greywater irrigated produce is likely to be safe for human consumption (based on microbiological analyses).
Acknowledgements

This research was funded by

- eThekwini Municipality
- National Research Foundation
- Water Research Foundation